A Reliable Firmware-Over-The-Air Architecture for Industrial Internet of Things /Ahmed Ibrahim Ahmed
Material type:
TextLanguage: English Summary language: English, Arabic Publication details: 2022Description: 144 p. ill. 21 cmSubject(s): Genre/Form: DDC classification: - 627
| Item type | Current library | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|
Thesis
|
Main library | 627/ A.I.R 2022 (Browse shelf(Opens below)) | Not for loan |
Browsing Main library shelves Close shelf browser (Hides shelf browser)
Supervisor:
Dr. Ahmed H. Madian
Dr. Lobna A. Said
Thesis (MS.C)—Nile University, Egypt, 2022 .
"Includes bibliographical references"
Contents:
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapters:
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Organization . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Industrial Internet of Things (IIoT) . . . . . . . . . . . . . . . . . . 8
2.1.1 Industrial Wireless Communication Technologies Overview . 9
2.1.2 Technical Challenges Overview . . . . . . . . . . . . . . . . 13
2.2 Firmware-Over-The-Air (FOTA) . . . . . . . . . . . . . . . . . . . 18
2.2.1 FOTA Updating Approaches Overview . . . . . . . . . . . . 19
2.2.2 FOTA Essential Operations . . . . . . . . . . . . . . . . . . 22
2.2.3 FOTA Technical Challenges and Limitations Overview . . . 23
2.2.4 FOTA Security Threats Overview . . . . . . . . . . . . . . . 26
2.2.5 FOTA Supported Platforms Overview . . . . . . . . . . . . 28
2.2.6 Previous FOTA Works . . . . . . . . . . . . . . . . . . . . . 34
5
3. Wireless ATMEL AVR In-Circuit Serial Programmer based on Wi-Fi and
ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . 44
3.1.3 Firmware Development . . . . . . . . . . . . . . . . . . . . 46
3.2 Experimental Works . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Wi-Fi Remote Programming . . . . . . . . . . . . . . . . . 47
3.2.2 ZigBee Remote Programming . . . . . . . . . . . . . . . . . 49
3.3 ATMEL STK500 SPI Programming Instructions Commands . . . . 51
4. Design of IoT Microchip AVR Programmer for FOTA Updates based on
Unified Program and Debug Interface using Wi-Fi and LoRa . . . . . . . 53
4.1 FOTA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Wi-Fi/LoRa AVR UPDI Programmer Circuit Explanation . 55
4.2.2 LoRa Firmware Sender Circuit Explanation . . . . . . . . . 59
4.2.3 AVR UPDI Programmer Firmware Explanation . . . . . . . 60
4.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 61
4.3.1 Wi-Fi AVR UPDI Programming Network Simulation . . . . 61
4.3.2 AVR UPDI Normal Programming Mode Simulation . . . . . 62
4.3.3 AVR ATtiny3216 UPDI Programming . . . . . . . . . . . . 65
5. Over-The-Air Firmware Updating Model suitable for Industrial IoT based
on Microchip AVR MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 The Proposed FOTA Model . . . . . . . . . . . . . . . . . . . . . . 68
5.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Firmware Development . . . . . . . . . . . . . . . . . . . . 72
5.3 Simulation And Experimental Results . . . . . . . . . . . . . . . . 73
5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 78
5.4 ATMEL STK500v2 HV Parallel Programming Instructions Commands 80
5.5 ATMEL STK500v2 HV Serial Programming Instructions Commands 81
6. A Scalable Firmware-Over-The-Air Architecture suitable for Industrial
IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1 The Proposed FOTA Architecture . . . . . . . . . . . . . . . . . . 82
6
6.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.1 Wi-Fi Firmware Uploader Circuit Explanation . . . . . . . 84
6.2.2 Wi-Fi Firmware Uploader Mechanism Explanation . . . . . 86
6.2.3 ARM STM32 Microcontroller Bootloader Mechanism Explanation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Web and Android Applications Mechanism Explanation . . 89
6.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 90
6.3.1 FOTA Simulation using Cloud Web Application . . . . . . . 90
6.3.2 FOTA Simulation using Android Application . . . . . . . . 91
6.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 92
7. IoT Microchip AVR Programmer based on TPI and PDI Protocols for
Firmware-over-the-Air Updates . . . . . . . . . . . . . . . . . . . . . . . 94
7.1 FOTA Solution Block Diagram . . . . . . . . . . . . . . . . . . . . 95
7.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.1 Wi-Fi AVR LV/HV TPI and PDI Programmer Circuit Interpretation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.2 Wi-Fi AVR LV/HV TPI and PDI Programmer Mechanism
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 104
7.3.1 Wi-Fi AVR LV/HV TPI and PDI Programming Network
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.2 AVR LV TPI Programming Mode Simulation . . . . . . . . 106
7.3.3 AVR PDI Programming Mode Simulation . . . . . . . . . . 107
7.3.4 AVR ATtiny20 LV TPI Programming using Wi-Fi . . . . . 108
7.3.5 AVR ATxmega32A4U PDI Programming using Wi-Fi . . . 109
7.4 ATMEL STK600 XPROG PDI Programming Instructions Commands110
8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 111
Conclusions
Future Work
References
Abstract:
Industrial Internet of Things is recently considered one of the most unprecedented
outputs of Internet of Things. The intensive adoption of the latest trends and applications
of the Internet of Things, and emerging wireless communication technologies in
the industrial sector is completely leading towards the development of the Industrial
IoT. The main objective of IIoT is to reduce cost and enhance work productivity by
connecting all industrial machines through the network to perform data acquisition,
exchange, manipulation and analysis, and to considerably optimize industrial processes
and services. The specifications and requirements of industrial mass production
are dynamically changing according to the market demands. Therefore, the industrial
machines in the production lines must be updated in scalable and simultaneous manner
to cope with the new changes. This requires an efficient Firmware-over-the-Air
architecture to be integrated with industrial production lines.
This work aims to design and develop scalable and efficient wireless FOTA architectures
to be suitable for integration with Industrial IoT. The proposed architectures
employ Wi-Fi, ZigBee and LoRa wireless communication technologies for achieving
reliable FOTA updating procedures. The developed FOTA architectures support constrained
networks by deploying low power wide area networks. The simulation models
are built to conduct all the required tests for identifying the most optimal solution
architecture.
Text in English, abstracts in English and Arabic
There are no comments on this title.