A Reliable Firmware-Over-The-Air Architecture for Industrial Internet of Things (Record no. 9771)

MARC details
000 -LEADER
fixed length control field 08351nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210s2022 a|||f bm|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 627
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmed Ibrahim Ahmed
245 1# - TITLE STATEMENT
Title A Reliable Firmware-Over-The-Air Architecture for Industrial Internet of Things
Statement of responsibility, etc. /Ahmed Ibrahim Ahmed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2022
300 ## - PHYSICAL DESCRIPTION
Extent 144 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Dr. Ahmed H. Madian<br/>Dr. Lobna A. Said
502 ## - Dissertation Note
Dissertation type Thesis (MS.C)—Nile University, Egypt, 2022 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2 Research Organization . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1 Industrial Internet of Things (IIoT) . . . . . . . . . . . . . . . . . . 8<br/>2.1.1 Industrial Wireless Communication Technologies Overview . 9<br/>2.1.2 Technical Challenges Overview . . . . . . . . . . . . . . . . 13<br/>2.2 Firmware-Over-The-Air (FOTA) . . . . . . . . . . . . . . . . . . . 18<br/>2.2.1 FOTA Updating Approaches Overview . . . . . . . . . . . . 19<br/>2.2.2 FOTA Essential Operations . . . . . . . . . . . . . . . . . . 22<br/>2.2.3 FOTA Technical Challenges and Limitations Overview . . . 23<br/>2.2.4 FOTA Security Threats Overview . . . . . . . . . . . . . . . 26<br/>2.2.5 FOTA Supported Platforms Overview . . . . . . . . . . . . 28<br/>2.2.6 Previous FOTA Works . . . . . . . . . . . . . . . . . . . . . 34<br/>5<br/>3. Wireless ATMEL AVR In-Circuit Serial Programmer based on Wi-Fi and<br/>ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>3.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>3.1.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 43<br/>3.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . 44<br/>3.1.3 Firmware Development . . . . . . . . . . . . . . . . . . . . 46<br/>3.2 Experimental Works . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.2.1 Wi-Fi Remote Programming . . . . . . . . . . . . . . . . . 47<br/>3.2.2 ZigBee Remote Programming . . . . . . . . . . . . . . . . . 49<br/>3.3 ATMEL STK500 SPI Programming Instructions Commands . . . . 51<br/>4. Design of IoT Microchip AVR Programmer for FOTA Updates based on<br/>Unified Program and Debug Interface using Wi-Fi and LoRa . . . . . . . 53<br/>4.1 FOTA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>4.2.1 Wi-Fi/LoRa AVR UPDI Programmer Circuit Explanation . 55<br/>4.2.2 LoRa Firmware Sender Circuit Explanation . . . . . . . . . 59<br/>4.2.3 AVR UPDI Programmer Firmware Explanation . . . . . . . 60<br/>4.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 61<br/>4.3.1 Wi-Fi AVR UPDI Programming Network Simulation . . . . 61<br/>4.3.2 AVR UPDI Normal Programming Mode Simulation . . . . . 62<br/>4.3.3 AVR ATtiny3216 UPDI Programming . . . . . . . . . . . . 65<br/>5. Over-The-Air Firmware Updating Model suitable for Industrial IoT based<br/>on Microchip AVR MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>5.1 The Proposed FOTA Model . . . . . . . . . . . . . . . . . . . . . . 68<br/>5.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 69<br/>5.2.1 Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . 69<br/>5.2.2 Firmware Development . . . . . . . . . . . . . . . . . . . . 72<br/>5.3 Simulation And Experimental Results . . . . . . . . . . . . . . . . 73<br/>5.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br/>5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 78<br/>5.4 ATMEL STK500v2 HV Parallel Programming Instructions Commands 80<br/>5.5 ATMEL STK500v2 HV Serial Programming Instructions Commands 81<br/>6. A Scalable Firmware-Over-The-Air Architecture suitable for Industrial<br/>IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br/>6.1 The Proposed FOTA Architecture . . . . . . . . . . . . . . . . . . 82<br/>6<br/>6.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 84<br/>6.2.1 Wi-Fi Firmware Uploader Circuit Explanation . . . . . . . 84<br/>6.2.2 Wi-Fi Firmware Uploader Mechanism Explanation . . . . . 86<br/>6.2.3 ARM STM32 Microcontroller Bootloader Mechanism Explanation<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br/>6.2.4 Web and Android Applications Mechanism Explanation . . 89<br/>6.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 90<br/>6.3.1 FOTA Simulation using Cloud Web Application . . . . . . . 90<br/>6.3.2 FOTA Simulation using Android Application . . . . . . . . 91<br/>6.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 92<br/>7. IoT Microchip AVR Programmer based on TPI and PDI Protocols for<br/>Firmware-over-the-Air Updates . . . . . . . . . . . . . . . . . . . . . . . 94<br/>7.1 FOTA Solution Block Diagram . . . . . . . . . . . . . . . . . . . . 95<br/>7.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 96<br/>7.2.1 Wi-Fi AVR LV/HV TPI and PDI Programmer Circuit Interpretation<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br/>7.2.2 Wi-Fi AVR LV/HV TPI and PDI Programmer Mechanism<br/>Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br/>7.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . 104<br/>7.3.1 Wi-Fi AVR LV/HV TPI and PDI Programming Network<br/>Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br/>7.3.2 AVR LV TPI Programming Mode Simulation . . . . . . . . 106<br/>7.3.3 AVR PDI Programming Mode Simulation . . . . . . . . . . 107<br/>7.3.4 AVR ATtiny20 LV TPI Programming using Wi-Fi . . . . . 108<br/>7.3.5 AVR ATxmega32A4U PDI Programming using Wi-Fi . . . 109<br/>7.4 ATMEL STK600 XPROG PDI Programming Instructions Commands110<br/>8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 111<br/>Conclusions <br/>Future Work <br/>References
520 3# - Abstract
Abstract Abstract:<br/>Industrial Internet of Things is recently considered one of the most unprecedented<br/>outputs of Internet of Things. The intensive adoption of the latest trends and applications<br/>of the Internet of Things, and emerging wireless communication technologies in<br/>the industrial sector is completely leading towards the development of the Industrial<br/>IoT. The main objective of IIoT is to reduce cost and enhance work productivity by<br/>connecting all industrial machines through the network to perform data acquisition,<br/>exchange, manipulation and analysis, and to considerably optimize industrial processes<br/>and services. The specifications and requirements of industrial mass production<br/>are dynamically changing according to the market demands. Therefore, the industrial<br/>machines in the production lines must be updated in scalable and simultaneous manner<br/>to cope with the new changes. This requires an efficient Firmware-over-the-Air<br/>architecture to be integrated with industrial production lines.<br/>This work aims to design and develop scalable and efficient wireless FOTA architectures<br/>to be suitable for integration with Industrial IoT. The proposed architectures<br/>employ Wi-Fi, ZigBee and LoRa wireless communication technologies for achieving<br/>reliable FOTA updating procedures. The developed FOTA architectures support constrained<br/>networks by deploying low power wide area networks. The simulation models<br/>are built to conduct all the required tests for identifying the most optimal solution<br/>architecture.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Software Engineering
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Software Engineering
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 211
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 211
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/21/2022   627/ A.I.R 2022 08/21/2022 08/21/2022 Thesis