Ternary logic designs and In-Computing Ternary SRAM implementations using CNTFET/ (Record no. 10248)

MARC details
000 -LEADER
fixed length control field 07002nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2023 a|||f bm|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Doaa Kamal Abdelrahman Hussein
245 1# - TITLE STATEMENT
Title Ternary logic designs and In-Computing Ternary SRAM implementations using CNTFET/
Statement of responsibility, etc. Doaa Kamal Abdelrahman Hussein
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2023
300 ## - PHYSICAL DESCRIPTION
Extent 106 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Ahmed G. Radwan
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2023 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Contents<br/>Page<br/>Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii<br/>Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii<br/>Chapters:<br/>1. Introduction 1<br/>1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2. Literature Survey On Ternary Logic system and Ternary Circuits<br/>implementation using CNTFET 4<br/>2.1 Ternary logic system . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>2.2 Ternary number representation . . . . . . . . . . . . . . . . . . . . . 6<br/>2.2.1 Unsigned representation . . . . . . . . . . . . . . . . . . . . . 6<br/>2.2.2 Signed representation . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.3 Ternary logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>x<br/><br/>2.3.1 Ternary inverters and buffers . . . . . . . . . . . . . . . . . . 8<br/>2.3.2 Ternary AND and OR gates . . . . . . . . . . . . . . . . . . . 9<br/>2.4 Ternary logic circuits implementation . . . . . . . . . . . . . . . . . . 10<br/>2.4.1 Carbon NanoTube Field Transistor (CNTFET) . . . . . . . . 10<br/>2.4.2 Ternary basic logic gates implementation . . . . . . . . . . . . 13<br/>2.4.3 Ternary logic circuits implementation . . . . . . . . . . . . . 17<br/>2.4.4 Ternary arithmetic circuits implementation . . . . . . . . . . 17<br/>2.5 Ternary SRAM implementation . . . . . . . . . . . . . . . . . . . . . 19<br/>2.6 CNTFET Stanford Model . . . . . . . . . . . . . . . . . . . . . . . . 20<br/>3. Comparative Study of CNTFET Implementations of 1-trit Multiplier 22<br/>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>3.2 Basic Ternary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>3.2.1 Ternary Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.2.2 Ternary multiplexer . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.3 1-trit multiplier different designs . . . . . . . . . . . . . . . . . . . . . 25<br/>3.3.1 Design-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>3.3.2 Design-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>3.4 Simulation results and discussion . . . . . . . . . . . . . . . . . . . . 28<br/>3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br/>4. Ternary SRAM Circuit Designs with CNTFETs 31<br/>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>4.2 Ternary SRAM Designs . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>xi<br/><br/>4.2.1 Design I: 6T-STI TSRAM . . . . . . . . . . . . . . . . . . . . 33<br/>4.2.2 Design II: 4T-STI TSRAM . . . . . . . . . . . . . . . . . . . . 33<br/>4.2.3 Design III: 4T-binary based TSRAM . . . . . . . . . . . . . . 33<br/>4.3 TSRAM designs simulation and comparison . . . . . . . . . . . . . . 35<br/>4.3.1 Writing operation . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>4.3.2 Reading operation . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>4.4 Stability and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>4.4.1 Static Noise Margin (SNM) . . . . . . . . . . . . . . . . . . . 42<br/>4.4.2 Impact of Soft Errors . . . . . . . . . . . . . . . . . . . . . . . 42<br/>4.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>4.5.1 Evaluation of The Static Noise Margin . . . . . . . . . . . . . 43<br/>4.5.2 Evaluation of soft errors effect . . . . . . . . . . . . . . . . . . 44<br/>4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>5. Ternary In memory computational SRAM 48<br/>5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>5.2 Ternary SRAM Cicuit and Operation . . . . . . . . . . . . . . . . . . 49<br/>5.3 Ternary In-Memory Computational SRAM implementation . . . . . . 49<br/>5.4 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>6. Conclusion and Future Work 54<br/>Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
520 3# - Abstract
Abstract Abstract:<br/>Ternary logic has become a promising alternative to traditional binary logic due to<br/>achieving low power consumption and smaller chip area. Carbon nanotube field effect<br/>transistor (CNTFET) is a promising technology as it achieves more advantages than<br/>MOSFET due to its low off-current feature, low leakage power and threshold voltage<br/>dependency on CNT diameter. Ternary logic circuits can be implemented easily<br/>using CNTFET devices. The multiplier block is the most critical to the efficiency<br/>and capability of the arithmetic systems, so the first part of our work is a comparison<br/>of different 1-trit multiplier implementations using (VS-CNTFET) Stanford model.<br/>The comparison is done in terms of area, power, and delay versus supply voltage<br/>and temperature. Convolutional neural networks (CNNs) and artificial intelligence<br/>(AI) are widely used in a variety of practical applications nowadays. The SRAM<br/>block is a cornerstone, as it has high power consumption, wide space, and complexity.<br/>Furthermore, the stability of the data in the SRAM against noise and performance<br/>under radian exposure are major challenges in SRAM design. In our work, a proposed<br/>design is presented concerning these challenges. In addition, complex CNN models<br/>have massive data requirements and sophisticated data reuse patterns, causing several<br/>hardware design issues. In-memory computational SRAM is a new technology for<br/>computing directly in the memory blocks. Ternary in memory computational SRAM<br/>(TIMC) is proposed and implemented.<br/>viii<br/><br/>Keywords<br/>Multiple-valued logic (MVL), ternary logic system, ternary logic gates, carbon nanotube field effect transistor (CNTFET), ternary multiplier, ternary SRAM, static<br/>noise margin, soft errors, single event effect, amplitude-duration criterion, ternary in<br/>memory computational SRAM.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject MSD
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School MSD
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 317
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 317
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 09/11/2023   621/ D.K.T / 2023 09/11/2023 09/11/2023 Thesis