000 07937nam a22002537a 4500
008 201210b2022 a|||f bm|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
_bara
082 _a627
100 0 _aSamy Hamed Mohamed Sharf
_92477
245 1 _aAgricultural Internet Of Things, Low Power Wide Area Network, Firmware-Over-The Air/
_cSamy Hamed Mohamed Sharf
260 _c2022
300 _a 105 p.
_bill.
_c21 cm.
500 _3Supervisor: Ahmed H. Madian
502 _aThesis (M.A.)—Nile University, Egypt, 2022 .
504 _a"Includes bibliographical references"
505 0 _aContents: Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapters: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Research Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Thesis Target Approach Organization . . . . . . . . . . . . . . . . 7 1.5 [AG IoT]-Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 [AG IoT]-Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Overview of Internet of Things in Ag-IoT . . . . . . . . . . . . . . 10 2.2 Ag-IoT communication technologies . . . . . . . . . . . . . . . . . 10 2.2.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 RFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Mobile communication . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 2.2.5 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Precision Agriculture WSN Sensors . . . . . . . . . . . . . . . . . . 13 2.3.1 Electrical and Electromagnetic Sensors . . . . . . . . . . . . 14 2.3.2 Optical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Mechanical Sensors for Crop . . . . . . . . . . . . . . . . . . 14 2.3.4 Acoustic and Air Flow Sensors . . . . . . . . . . . . . . . . 15 2.3.5 Electrochemical Sensors . . . . . . . . . . . . . . . . . . . . 15 2.4 IoT-based smart agriculture . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Principal advantages of IoT in smart agriculture . . . . . . . . . . . 16 2.6 Ag-IoT Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1 DHT11 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.2 Water Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 Challenges for Agriculture . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 Ag-IoT Data Communication Protocol . . . . . . . . . . . . . . . . 18 2.9 Ag-IoT Supported Low-Power Microcontroller . . . . . . . . . . . . 18 2.10 FOTA Architecture Overview . . . . . . . . . . . . . . . . . . . . . 18 3. On Flashing Over The Air ”FOTA” for IoT Appliances - An ATMEL Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 40 3.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . 42 3.1.3 Software Implementation . . . . . . . . . . . . . . . . . . . 46 3.2 Experimental Works . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Remote Programming Applications . . . . . . . . . . . . . . 48 3.2.2 Wi-Fi Remote Flashing . . . . . . . . . . . . . . . . . . . . 50 3.2.3 LoRa Remote Flashing . . . . . . . . . . . . . . . . . . . . . 51 4. An Efficient OTA firmware updating Architecture based on LoRa suitable for agricultural IoT Applications . . . . . . . . . . . . . . . . . . . . . . 54 4.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 55 4.2 The Proposed System Implementation . . . . . . . . . . . . . . . . 56 4.2.1 LoRa Firmware Uploader Circuit Interpretation . . . . . . . 56 4.3 Simulation & Excremental Execution . . . . . . . . . . . . . . . . . 58 4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.2 Excremental Work . . . . . . . . . . . . . . . . . . . . . . . 62 5. ETA32 Training Board Of Innovative Agriculture Simulation . . . . . . . 63 5.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 63 7 6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
520 3 _aAbstract: In An agricultural from perspective Internet of things-IoT domain known as “AgIoT”. These lands lacking of wireless internet connectivity infrastructure. One of the big issues in this domain are how to gathering, manipulate and transfer data wirelessly with a revitalization performance and considerate rationing of energy consumption. A low-power wide-area network (LPWAN) one of famous type of wireless telecommunication wide area network structured amid a set of low bit rate operated depending on batteries. In some agricultural areas, there are obstacles to collecting, processing and transmit a set of data contain characteristics and information related to the environment suitable for the type of crops in a manner appropriate to their nature. This nature of crops is rapidly changed during the four seasons that shifting weather condition during the year. Increased Efficiency: Farmers can monitor the crops in real-time, and thus, forecast concerns and make educated choices before they arise. Less Consumption of Water and Energy: Sensors throughout the fields assist the farmers calculate the right resources necessary. Reduced Operation Costs: The utility of IoT provides higher revenues as it leads to less human intervention owing to automated procedures. Low Usage of Chemicals: IoT-based solutions let farmers convert to cost-effective and eco-friendly agricultural practises via much-reduced consumption of toxic pesticides and fertilisers. Better Food Quality: Through the methods stated above, producers 14 may create the circumstances required to increase the quality of the crops. Monitoring of Farms From Anywhere: Farming organisations may monitor several fields in diverse places from any part of the globe. Furthermore, in the scalability issue of these networks necessitates us to design and implement a “FOTA” paradigm that’s comprehensively fit for “LPWAN” network criteria. In this research we propose a complete architecture of an “LPWAN” networks that’s capable of providing “FOTA” Capabilities to a grouped of remote sensory nodes using a low power Micro-controller from PIC Families. We provide excremental work on flashing remote sensor node based on Wireless Sensor Network - WSN using LoRa module based on “LPWAN” approach to achieve the lowest energy consumption in this use case.
546 _aText in English, abstracts in English and Arabic
650 4 _aSoftware Engineering
_9211
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aSoftware Engineering
_9211
942 _2ddc
_cTH
999 _c9937
_d9937