000 04722nam a22002537a 4500
008 201210b2022 a|||f bm|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aKhaled Adel Ezzat
_91866
245 1 _aEVOLUTION OF OBJECT DETECTION, TRACKING, AND MOTION ESTIMATION ALONG WITH DEEP NEURAL NETWORKS/
_cKhaled Adel Ezzat
260 _c2022
300 _a61 p.
_bill.
_c21 cm.
500 _3Supervisor: Khaled Foad Mustafa Elattar
_a Publication: 1-On the Application of Hierarchical Adaptive Structured Mesh" HASM®" Codec for Ultra Large Video Format https://dl.acm.org/doi/abs/10.1145/3436829.3436870 2-nnDPI: A Novel Deep Packet Inspection Technique Using Word Embedding, Convolutional and Recurrent Neural Networks https://ieeexplore.ieee.org/abstract/document/9257912 3-On Optimizing the Visual Quality of HASM-Based Streaming—The Study the Sensitivity of Motion Estimation Techniques for Mesh-Based Codecs in Ultra High Definition Large Format Real-Time Video Coding https://link.springer.com/chapter/10.1007/978-981-33-6129-4_15 4-MinkowRadon: Multi-Object Tracking Using Radon Transformation and Minkowski Distance https://ieeexplore.ieee.org/abstract/document/9581542
502 _aThesis (M.A.)—Nile University, Egypt, 2022 .
504 _a"Includes bibliographical references"
505 0 _aContents: Chapters: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. MinkowRadon Multi-Object Tracking Technique . . . . . . . . . . . . . . 12 2.1 Dataset - MOTChallenge (MOT20 & MOT17) . . . . . . . . . . . 13 2.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . 20 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3. The Adaptive MinkowYolo Multi-Object Detector-Tracker . . . . . . . . 24 3.1 Dataset - MOT + Visual Tracker Benchmark (VTB) . . . . . . . . 26 3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . 37 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography . . .
520 3 _aAbstract: Object Detection, Tracking and Motion Estimation have been a major concern since the 1970s, from Self Driving Cars, Surveillance Cameras, Industrial robotics, Traffic monitoring, Medical diagnosis systems, to Activity recognition, are expecting a huge increase in demand for automated detection-tracking systems. Modern hardware specifications and evolving deep learning applications with advancement of Computer Vision and Digital Video Processing are resulting in a massive progress towards fully automated systems, with all advance models and systems like R-CNN, YOLO, SSD, and RetinaNet, there will always be a trade-off between precision (mAP) and speed (FPS) which puts a new limits to computer vision advancement. Technological merging has the potential to drive the intuition to achieve such advancements, and overcome some of the existing limitations. Introducement of a combination between Deep Neural Networks and Digital signal processing to enable once again progress to be done in improving Object Detection, Tracking and Motion Estimation in a real-time videos. Utilizing both of the fields, this thesis purposes a complete detection/ tracking framework utilizing YOLO v4 as a state-of-art object detector to detect the objects in the video sequences. In addition to a novel MinkowRadon tracking algorithm which utilizes the Radon Transformation and Minkowski Distance to translates the rest of video frames sequence to the signal’s domain, in an attempt iv to tackle extreme object tracking problems found in video sequences like eg. trembling moving cameras, deformation, motion blur, fast motion, and in-plane rotation. Tracking through signals have proven with a higher accuracy compared to the stateof- art tracking techniques that a combination between classical techniques and deep learning models is sufficient to solve most modern problems.
546 _aText in English, abstracts in English .
650 4 _aInformatics-IFM
_9266
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics-IFM
_9266
942 _2ddc
_cTH
999 _c9782
_d9782