000 06042nam a22002537a 4500
008 220110b2021 |||a|||f mb|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aKarim Magdy Amer
_91058
245 1 _aSelf-Supervised Learning Framework for Sequential Data Applications /
_cKarim Magdy Amer
260 _c2021
300 _a95 p.
_bill.
_c21 cm.
500 _3Supervisor: Mohamed Elhelw
502 _aThesis (M.A.)—Nile University, Egypt, 2021 .
504 _a"Includes bibliographical references"
505 0 _aContents: Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapters: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . 4 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . 5 2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Deep Neural Network Architectures . . . . . . . . . . . . . . . 7 2.2.1 Convolutional Neural Network . . . . . . . . . . . . . 7 2.2.2 Sequence Models . . . . . . . . . . . . . . . . . . . . . 9 2.3 Self Supervised Learning . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Natural Language Processing . . . . . . . . . . . . . . 21 2.3.3 Automatic Speech Recognition . . . . . . . . . . . . . 23 2.4 Sequential Data Applications using Machine Learning and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Agriculture . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 vi 3. Self-Supervised Learning Framework for Sequential Data . . . . . . 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . 29 3.3 Self Supervised Learning Modules . . . . . . . . . . . . . . . . 31 3.3.1 Denoising Autoencoder Module . . . . . . . . . . . . . 31 3.3.2 Contrastive Learning Module . . . . . . . . . . . . . . 33 3.4 Supervised Learning Module . . . . . . . . . . . . . . . . . . . 35 3.5 Deep Neural Network Module . . . . . . . . . . . . . . . . . . 36 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Case Study: Crop Identification . . . . . . . . . . . . . . . . . 37 4.2.1 Problem Description . . . . . . . . . . . . . . . . . . . 37 4.2.2 Dataset and Evaluation Metrics . . . . . . . . . . . . . 39 4.2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . 44 4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Case Study: mRNA Vaccine Degradation Prediction . . . . . 51 4.3.1 Problem Description . . . . . . . . . . . . . . . . . . . 51 4.3.2 Dataset and Evaluation Metrics . . . . . . . . . . . . . 52 4.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . 56 4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 63 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Summary and Contributions . . . . . . . . . . . . . . . . . . . 63 5.3 Future Work Directions . . . . . . . . . . . . . . . . . . . . . 64 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
520 3 _aAbstract: Recent advances in Deep Learning (DL) and Artificial Intelligence (AI) algorithms have proven to be greatly beneficial in many applications. The success of such algorithms in the last decade was mainly built on supervised training of very complex models using large labeled datasets. However, the data labeling process is expensive and time consuming especially for applications with sequential data. Self-Supervised Learning (SSL) appeared as a solution to train complex models with unlabeled datasets. The main idea behind SSL is to create auxiliary task based on some properties in the dataset to learn a latent space that captures the data semantics. Models trained using SSL can be fine-tuned later on a much smaller labeled datasets. This learning scheme becomes very successful in Computer Vision (CV) and Natural Language Processing (NLP) applications but hasn’t yet generalized to other sequential data applications. In this work, we propose a novel DL framework for sequential data processing while adopting SSL techniques to make use of unlabeled data. Our framework is evaluated on two different applications from two different domains, Crop Identification and mRNA Vaccine Degradation Prediction. Details of the applications’ datasets, pre-processing steps and learning objectives of both applications are explained. Experimental results demonstrate that the proposed framework offers a promising approach for utilizing SSL in the training pipeline of commonly-used DL models.
546 _aText in English, abstracts in English.
650 4 _aInformatics-IFM
_9266
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics-IFM
_9266
942 _2ddc
_cTH
999 _c9253
_d9253