000 04357nam a22002537a 4500
008 210318b2021 a|||f mb|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aFadi Nader Zaki Baskharon
_9498
245 1 _aPredicting Remaining Cycle Time from Ongoing Cases:
_bA Survival Analysis-Based Approach /
_cFadi Nader Zaki Baskharon
260 _c2021
300 _a 51 p.
_bill.
_c21 cm.
500 _3Supervisor: Mohamed A. ElHelw
502 _aThesis (M.A.)—Nile University, Egypt, 2021 .
504 _a"Includes bibliographical references"
505 0 _aContents: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Thesis Outline and Summary of Contributions . . . . . . . . . . . . . . . . . . 4 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Baseline Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Optimization function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Output interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 vii 5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Appendices: A. cycle prediction documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Bibliography .
520 3 _aAbstract: in predictive process monitoring. Different approaches that learn from event logs, e.g., relying on an existing representation of the process or leveraging machine learning approaches, have been proposed in the literature to tackle this problem. Machine learning-based techniques have shown superiority over other techniques with respect to the accuracy of the prediction as well as freedom from knowledge about the underlying process models generating the logs. However, all proposed approaches only learn from complete traces. This might cause delays in starting new training cycles as usually process instances last over a long time that could even reach months or years. In this thesis, we propose a machine learning approach that can also accept and learn from incomplete (ongoing) traces. Using a time-aware survival analysis technique, we can train a neural network to predict the most likely remaining cycle time of a running case. This approach is evaluated on different real-life datasets and is compared with a state-ofthe- art baseline. Results show that our approach, in most cases, is able to outperform the baseline approach with a simple model architecture and less training time. The approach is further enhanced to learn from trace level - fixed - features as well as the events-related features. We empirically proved that trace-level features enhance the prediction power of the model using a real-life dataset.
546 _aText in English, abstracts in English.
650 4 _aInformatics
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics
_9499
942 _2ddc
_cTH
999 _c9034
_d9034