000 04098nam a22002537a 4500
008 210223b2009 a|||f mb|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a005
100 0 _aAly Mahmoud Mohamed AbdelRahman ElGamal
245 1 _aInformation Theoretic Secrecy in Two-Way Channels /
_cAly Mahmoud Mohamed AbdelRahman ElGamal
260 _c2009
300 _a72 p.
_bill.
_c21 cm.
500 _3Supervisor: Moustafa Youssef
502 _aThesis (M.A.)—Nile University, Egypt, 2009 .
504 _a"Includes bibliographical references"
505 0 _aContents: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. The One-Way Wire-Tap Channel . . . . . . . . . . . . . . . . . . . . . . 7 2.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The Discrete Memoryless Wire-Tap Channel . . . . . . . . . . . . . 10 2.3 The Gaussian Wire-Tap Channel . . . . . . . . . . . . . . . . . . . 13 3. Achievable Secrecy Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Discrete Memoryless Channels . . . . . . . . . . . . . . . . . . . . 18 3.4 The Gaussian Channel . . . . . . . . . . . . . . . . . . . . . . . . . 24 v 4. A Practical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 One-Way Communication with Feedback . . . . . . . . . . . 32 4.2.2 Two-Way Communication with Randomized Scheduling . . 33 4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 38 5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography . . . . . . . . . . . . .
520 3 _aAbstract: This thesis is concerned with the study of realizing reliable and secure twoway communication in the presence of a passive eavesdropper (Eve). Our approach achieves perfect information theoretic secrecy via a novel scheme that employs both random binning and channel prefixing. The key idea is to let both users jointly optimize the prefix channel distributions, such that their new channel conditions are favorable compared to Eve’s channel. Random binning is then used to exploit the secrecy advantage offered by the cascade channel. An achievable rate region for the general discrete memoryless channel is provided, and a corollary for the modulo-two channel is given. Next, a practical setting, where the nodes have half-duplex antennas, is explored for the modulo-two and Gaussian channels. In the Gaussian setting, the channel coefficients are based on a free space path loss model. In this setting, we use a randomized scheduling and power allocation scheme, where we allow Alice and Bob to send symbols at random time instants. While Alice will be able to determine the symbols transmitted by Bob, Eve will suffer from ambiguity regarding the source of any particular symbol. This desirable ambiguity is enhanced, in our approach, by randomizing the transmit power level. Finally, we interpret our results in an experimental setup using IEEE 802.15.4-enabled sensor boards, and show that a Wireless Body Area Network (WBAN) is a natural application to our approach.
546 _aText in English, abstracts in English.
650 4 _aWireless Technologies
_9327
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aWireless Technologies
_9327
942 _2ddc
_cTH
999 _c8968
_d8968