000 04322nam a22002537a 4500
008 210112b2015 a|||f mb|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aEmad Ashraf Samuel
_9284
245 1 _aSentimento - Opinion Mining System for Product Review /
_cEmad Ashraf Samuel
260 _c2015
300 _a107 p.
_bill.
_c21 cm.
500 _3Supervisor: Samhaa El-Beltagy
502 _aThesis (M.A.)—Nile University, Egypt, 2015 .
504 _a"Includes bibliographical references"
505 0 _aContents: CHAPTER 1: INTRODUCTION 1 1.1. Motivation ............................................................................................2 1.2. Background ..........................................................................................3 1.3. Problem Definition..............................................................................5 1.4. Proposed Solution ...............................................................................7 1.5. Methodology ........................................................................................8 1.6. Thesis Outline ....................................................................................11 CHAPTER 2: LITERATURE REVIEW 13 2.1 About Sentiment Analysis ...............................................................14 2.2 Aspect-Based Sentiment Analysis Research .................................22 2.3 Our Approach in Sentimento ..........................................................32 CHAPTER 3: SYSTEM ARCHITECTURE 35 3.1 What is Sentimento? .........................................................................36 3.2 Sentimento’s Architecture ...............................................................37 3.3 Sentimento’s Stages ..........................................................................38 CHAPTER 4: ASPECTS EXTRACTION 45 4.1 Aspect-Based Ontology ....................................................................46 4.2 Aspects Extraction and Categorization in Sentimento ................52 CHAPTER 5: SENTIMENT CLASSIFICATION 55 5.1 Opinion Lexicon ................................................................................57 5.2 Sentiment Classification in Sentimento .........................................60 iv CHAPTER 6: EVALUATION 65 6.1 Choosing Datasets For Evaluation .................................................67 6.2 SemEval Datasets ..............................................................................69 6.3 Evaluation of Aspects Extraction ....................................................71 6.4 Evaluation of Sentiment Classification ..........................................73 6.5 Evaluation of Other Parameters......................................................76 CHAPTER 7: CONCLUSION 79 7.1 Current Status of Sentimento ..........................................................80 7.2 Future Work .......................................................................................81 APPENDIX A – HOW TO USE SENTIMENTO 85 APPENDIX B – SAMPLES FROM EVALUATION DATASET 91 REFERENCES
520 3 _aAbstract: and more and more people are writing online reviews. These reviews are very important to give the real experience of products to potential customers and to the producing corporations. The number of reviews for some products may reach hundreds or even thousands. We need an automatic system that is able to summarize these reviews in a way that shows what exactly people like and dislike about the product. In this work, we develop Sentimento as an opinion mining system for online product reviews that is able to provide an aspect-based summary with accuracy close to an expert human reviewer and within an acceptable time. Sentimento is mainly divided to two tasks: aspects extraction and categorization, and opinions extraction and classification. The main idea is using ontology for the first task and opinion lexicon for the second task. Our experimental results using annotated test data on laptop reviews are promising for both tasks.
546 _aText in English, abstracts in English.
650 4 _aInformatics-IFM
_9266
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics-IFM
_9266
942 _2ddc
_cTH
999 _c8840
_d8840