000 09195nam a22002537a 4500
008 210112b2011 a|||f mb|| 00| 0 eng d
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aMohamed Elsayed AbdelRaouf Elsayed
245 1 _aBody and Visual Sensor Fusion for GAIT Impairment Analysis in Ubiquitous Healthcare Systems
_cMohamed Elsayed AbdelRaouf Elsayed
260 _c2011
300 _a 122 p.
_bill.
_c21 cm.
500 _3Supervisor: Mohamed A. El-Helw
502 _aThesis (M.A.)—Nile University, Egypt, 2011 .
504 _a"Includes bibliographical references"
505 0 _aContents: CHAPTER ONE ............................................................................................................... 19 1. INTRODUCTION..................................................................................................... 19 1.1. Introduction .................................................................................................. 19 1.2. Challenges ..................................................................................................... 22 1.3. Thesis Contribution ....................................................................................... 23 CHAPTER TWO .............................................................................................................. 26 2. PERVASIVE HEALTHCARE MONITORING ................................................................ 26 2.1. Introduction .................................................................................................. 26 2.2. Ubiquitous Monitoring Technologies ............................................................. 27 2.2.1. Body Sensor Networks ........................................................................... 27 2.2.2. Visual Sensor Networks ......................................................................... 30 2.3. Sensor Design and Hardware Architectures ................................................... 33 2.3.1. BSN Design Goals ................................................................................... 33 2.3.2. BSNs Hardware Architecture .................................................................. 35 2.3.3. VSNs Design Goals ................................................................................. 38 2.3.4. VSNs Hardware Architecture.................................................................. 38 2.4. Motion Analysis Applications ......................................................................... 41 2.5. Conclusions ................................................................................................... 44 CHAPTER THREE ........................................................................................................... 45 3. BODY AND VISUAL MOTION FEATURES EXTRACTION AND FUSION ........................ 45 3.1. Introduction .................................................................................................. 3.2. Body Motion Feature Computation ............................................................... 45 3.3. Visual Feature Extraction ............................................................................... 49 3.3.1. Visual Data Enhancement ............................................................................ 49 Background Modeling and Foreground Detection................................... 49 Shadow Detection and Removal ............................................................. 53 3.3.2. Blob Skeletonization .................................................................................... 56 Moore Neighborhood algorithm ............................................................. 57 3.3.3. Visual Metrics .............................................................................................. 60 3.4. Data Fusion ................................................................................................... 64 3.5. Conclusions ................................................................................................... 67 CHAPTER FOUR ............................................................................................................. 68 4. GAIT IMPAIRMENT CLASSIFICATION AND ANALYSIS .............................................. 68 4.1. Introduction .................................................................................................. 68 4.2. Classification Techniques ............................................................................... 68 4.2.1. Multilayer Perceptron ................................................................................. 68 4.2.2. Naïve Bayes Classifier .................................................................................. 71 4.2.3. K-Nearest Neighbor ..................................................................................... 73 4.2.4. Decision Tree............................................................................................... 75 4.3. Change Analysis Technique............................................................................ 76 4.4. Conclusion ..................................................................................................... 79 CHAPTER FIVE ............................................................................................................... 80 5. EXPERIMENTS AND RESULTS ................................................................................. 80 5.1. Introduction .................................................................................................. 80 5.2. Sensors Placement and Installation ............................................................... 81 5.2.1. BSN Sensor Placement and Orientation ....................................................... 81 5.2.2. VSN Nodes Deployment .............................................................................. 82 5.3. Dataset Collection ......................................................................................... 85 5.4. Cross-Validation Experiment.......................................................................... 87 5.5. Gait Classification Experiment ....................................................................... 91 5.4.1. Multiple Layer Preceptron ........................................................................... 5.4.2. Naïve Bayes Classifier .................................................................................. 92 5.4.3. K-Nearest Neighbors ................................................................................... 93 5.4.4. Decision Tree............................................................................................... 95 5.4.5. Error Percentage ......................................................................................... 96 5.6. Gait Impairment Quantification using Change Analysis Technique ................. 97 5.7. Conclusion ................................................................................................... 101 CHAPTER SIX ............................................................................................................... 102 6. CONCLUSIONS AND FUTURE WORK ....................................................................
520 3 _aAbstract: Human motion analysis provides a valuable solution for monitoring the wellbeing of the elderly, quantifying post-operative patient recovery and monitoring the progression of neurodegenerative diseases such as Parkinson’s. The development of accurate motion analysis models, however, requires the integration of multi-sensing modalities and the utilization of appropriate data analysis techniques. This work describes a robust framework that is monitor and quantifies the patients’ gait impairment by integrating information captured by two different sensing modalities which are body and visual sensor networks. Real-time target extraction is applied and a skeletonization procedure is subsequently carried out to quantify the internal motion of moving target and computes two metrics, spatiotemporal cyclic motion between leg segments and head trajectory, for each vision node. Extracted motion metrics from multiple vision nodes and accelerometer information from a wearable body sensor are then fused at the feature level. Then the combined features used to classify target’s walking gait as being normal or abnormal (limping) by using Cross-Validation and several classification techniques such as Multiple Layer Preceptron, Naïve Bayes Classifier, K-Nearest Neighbors, and Decision Tree. Furthermore the proposed framework is capable of measuring gait impairment and recovery of postoperative patients in smart healthcare environments by using Change Analysis algorithm. The potential value of the proposed framework for patient monitoring is demonstrated and the results obtained from practical experiments are described.
546 _aText in English, abstracts in English.
650 4 _aInformatics-IFM
_9266
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics-IFM
_9266
942 _2ddc
_cTH
999 _c8802
_d8802