000 06813cam a22003014a 4500
008 080402s2005 nyua b 001 0 eng
010 _a2005040244
020 _a0387247661
020 _a9780387247663
035 _a(Sirsi) u499
040 _aEG-CaNU
_cEG-CaNU
_dEG-CaNU
042 _ancode
082 0 0 _a512.5
_2 22
100 1 _aRoman, Steven.
_94737
245 1 0 _aAdvanced linear algebra /
_c Steven Roman.
250 _a2nd ed.
260 _aNew York :
_b Springer,
_c c2005.
300 _axvi, 482 p. :
_b ill. ;
_c 25 cm.
490 0 _aGraduate texts in mathematics ;
_v 135
504 _aIncludes bibliographical references (p. [473]-474) and index.
505 0 _g Ch. 0.
_t Preliminaries --
_g Pt. 1.
_t Preliminaries --
_t Matrices --
_t Determinants --
_t Polynomials. Functions --
_t Equivalence Relations --
_t Zorn’s Lemma --
_t Cardinality --
_g Pt. 2.
_t Algebraic Structures --
_t Groups --
_t Rings --
_t Integral Domains --
_t Ideals and Principal Ideal Domains --
_t Prime Elements --
_t Fields --
_t The Characteristic of a Ring --
_g Pt. 1.
_t Basic Linear Algebra --
_g Ch. 1.
_t Vector Spaces --
_t Vector Spaces --
_t Subspaces --
_t The Lattice of Subspaces --
_t Direct Sums --
_t Spanning Sets and Linear Independence --
_t The Dimension of a Vector Space --
_t The Row and Column Space of a Matrix --
_t Coordinate Matrices --
_t Exercises --
_g Ch. 2.
_t Linear Transformations --
_t Linear Transformations --
_t The Kernel and Image of a Linear Transformation --
_t Isomorphisms --
_t The Rank Plus Nullity Theorem --
_t Linear Transformations from F[superscript n] to F[superscript m] --
_t Change of Basis Matrices --
_t The Matrix of a Linear Transformation --
_t Change of Bases for Linear Transformations --
_t Equivalence of Matrices --
_t Similarity of Matrices --
_t Invariant Subspaces and Reducing Pairs --
_t Exercises --
_g Ch. 3.
_t Isomorphism Theorems --
_t Quotient Spaces --
_t The First Isomorphism Theorem --
_t The Dimension of a Quotient Space --
_t Additional Isomorphism Theorems --
_t Linear Functionals --
_t Dual Bases --
_t Reflexivity --
_t Annihilators --
_t Operator Adjoints --
_t Exercises --
_g Ch. 4.
_t Modules I --
_t Motivation --
_t Modules --
_t Submodules --
_t Direct Sums --
_t Spanning Sets --
_t Linear Independence --
_t Homomorphisms --
_t Free Modules --
_t Summary --
_t Exercises --
_g Ch. 5.
_t Modules II --
_t Quotient Modules --
_t Quotient Rings and Maximal Ideals --
_t Noetherian Modules --
_t The Hilbert Basis Theorem --
_t Exercises --
_g Ch. 6.
_t Modules over Principal Ideal Domains --
_t Free Modules over a Principal Ideal Domain --
_t Torsion Modules --
_t The Primary Decomposition Theorem --
_t The Cyclic Decomposition Theorem for Primary Modules --
_t Uniqueness --
_t The Cyclic Decomposition Theorem --
_t Exercises --
_g Ch. 7.
_t Structure of a Linear Operator --
_t A Brief Review --
_t The Module Associated with a Linear Operator --
_t Submodules and Invariant Subspaces --
_t Orders and the Minimal Polynomial --
_t Cyclic Submodules and Cyclic Subspaces --
_t Summary --
_t The Decomposition of V. --
_t The Rational Canonical Form --
_t Exercises --
_g Ch. 8.
_t Eigenvalues and Eigenvectors --
_t The Characteristic Polynomial of an Operator --
_t Eigenvalues and Eigenvectors --
_t The Cayley-Hamilton Theorem --
_t The Jordan Canonical Form --
_t Geometric and Algebraic Multiplicities --
_t Diagonalizable Operators --
_t Projections --
_t The Algebra of Projections --
_t Resolutions of the Identity --
_t Projections and Diagonalizability --
_t Projections and Invariance --
_t Exercises --
_g Ch. 9.
_t Real and Complex Inner Product Spaces --
_t Introduction --
_t Norm and Distance --
_t Isometries --
_t Orthogonality --
_t Orthogonal and Orthonormal Sets --
_t The Projection Theorem --
_t The Gram-Schmidt Orthogonalization Process --
_t The Riesz Representation Theorem --
_t Exercises --
_g Ch. 10.
_t Spectral Theorem for Normal Operators --
_t The Adjoint of a Linear Operator --
_t Orthogonal Diagonalizability --
_t Motivation --
_t Self-Adjoint Operators --
_t Unitary Operators --
_t Normal Operators --
_t Orthogonal Diagonalization --
_t Orthogonal Projections --
_t Orthogonal Resolutions of the Identity --
_t The Spectral Theorem --
_t Functional Calculus --
_t Positive Operators --
_t The Polar Decomposition of an Operator --
_t Exercises --
_g Pt. 2.
_t Topics --
_g Ch. 11.
_t Metric Vector Spaces --
_t Symmetric, Skew-symmetric and Alternate Forms --
_t The Matrix of a Bilinear Form --
_t Quadratic Forms --
_t Linear Functionals --
_t Orthogonality --
_t Orthogonal Complements --
_t Orthogonal Direct Sums --
_t Quotient Spaces --
_t Symplectic Geometry - Hyperbolic Planes --
_t Orthogonal Geometry - Orthogonal Bases --
_t The Structure of an Orthogonal Geometry --
_t Isometries --
_t Symmetries --
_t Witt’s Cancellation Theorem --
_t Witt’s Extension Theorem --
_t Maximum Hyperbolic Subspaces --
_t Exercises --
_g Ch. 12.
_t Metric Spaces --
_t The Definition --
_t Open and Closed Sets --
_t Convergence in a Metric Space --
_t The Closure of a Set --
_t Dense Subsets --
_t Continuity --
_t Completeness --
_t Isometries --
_t The Completion of a Metric Space --
_t Exercises --
_g Ch. 13.
_t Hilbert Spaces --
_t A Brief Review --
_t Hilbert Spaces --
_t Infinite Series --
_t An Approximation Problem --
_t Hilbert Bases --
_t Fourier Expansions --
_t A Characterization of Hilbert Bases --
_t Hilbert Dimension --
_t A Characterization of Hilbert Spaces --
_t The Riesz Representation Theorem --
_t Exercises --
_g Ch. 14.
_t Tensor Products --
_t Free Vector Spaces --
_t Another Look at the Direct Sum --
_t Bilinear Maps and Tensor Products --
_t Properties of the Tensor Product --
_t The Tensor Product of Linear Transformations --
_t Change of Base Field --
_t Multilinear Maps and Iterated Tensor Products --
_t Alternating Maps and Exterior Products --
_t Exercises --
_g Ch. 15.
_t Affine Geometry --
_t Affine Geometry --
_t Affine Combinations --
_t Affine Hulls --
_t The Lattice of Flats --
_t Affine Independence --
_t Affine Transformations --
_t Projective Geometry --
_t Exercises --
_g Ch. 16.
_t Umbral Calculus --
_t Formal Power Series --
_t The Umbral Algebra --
_t Formal Power Series as Linear Operators --
_t Sheffer Sequences --
_t Examples of Sheffer Sequences --
_t Umbral Operators and Umbral Shifts --
_t Continuous Operators on the Umbral Algebra --
_t Operator Adjoints --
_t Automorphisms of the Umbral Algebra --
_t Derivations of the Umbral Algebra --
_t Exercises.
630 0 0 _aCIT.
_914
630 0 0 _aMOT.
_99971
630 0 0 _aITS.
_9160
650 0 _aAlgebras, Linear.
_9930
596 _a1
999 _c3987
_d3987