000 07255nam a22002657a 4500
008 201210b2024 a|||f bm|| 00| 0 eng d
024 7 _a0000-0003-2997-272X
_2ORCID
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
082 _a610
100 0 _aBishoy Kamal Gad Sharobim
_93652
245 1 _aSECRET IMAGE SHARING APPROACHES USING NUMBER THEORY AND CHAOTIC SYSTEMS
_c/Bishoy Kamal Gad Sharobim
260 _c2024
300 _a 180p.
_bill.
_c21 cm.
500 _3Supervisor: Heba Kamal Aslan
502 _aThesis (M.A.)—Nile University, Egypt, 2024 .
504 _a"Includes bibliographical references"
505 0 _aContents: Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII 1. Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Background and Survey 4 2.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Numerical Solvers Overview . . . . . . . . . . . . . . . . . . . 9 2.2.2 Chaotic Generators Simulation . . . . . . . . . . . . . . . . . 11 2.2.3 PRNGs Results and Tests . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Fractional-Order Rossler System . . . . . . . . . . . . . . . . 19 2.2.5 Generalized Tent Map . . . . . . . . . . . . . . . . . . . . . . 20 2.2.6 Generalized Arnold Transform . . . . . . . . . . . . . . . . . . 27 2.3 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 The Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.3 Euler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.4 Cryptographic Applications of Basic Number Theory . . . . . 41 2.4 Secure Hash Algorithm: SHA-256 . . . . . . . . . . . . . . . . . . . . 44 2.5 Secret Sharing Literature . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5.1 VSS Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5.2 SIS Using Polynomial Interpolation . . . . . . . . . . . . . . . 52 2.5.3 XOR-Based MSIS . . . . . . . . . . . . . . . . . . . . . . . . 54 3. Number Theory Based Secret Image Sharing 56 3.1 A (k, n)-Secret Image Sharing With Steganography Using Generalized Tent Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 58 3.2 An Efficient Multi-Secret Image Sharing System Based on Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 74 IV 3.2.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 80 3.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3 A Unified System for Encryption and Multi-Secret Image Sharing Using S-box and CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 86 4. Chaos Based Secret Image Sharing 97 4.1 Different Designs of Chaos-Based Secret Image Sharing Systems . . . 97 4.1.1 The VSS System . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1.2 The First SIS System . . . . . . . . . . . . . . . . . . . . . . 100 4.1.3 The Second SIS System . . . . . . . . . . . . . . . . . . . . . 102 4.1.4 Results and Comparisons . . . . . . . . . . . . . . . . . . . . 103 4.2 Multi-Secret Image Sharing Using Fractional-Order Rossler System . 111 4.2.1 Proposed MSIS System . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3 Progressive Multi-Secret Sharing of Color Images Using Lorenz Chaotic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.3.1 Proposed MSIS system . . . . . . . . . . . . . . . . . . . . . . 127 4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 129 4.3.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5. Conclusions and Future Work 141 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
520 3 _aAbstract: Securing the transmission of secret information is important. When sending a secret image to mutually suspicious receivers, they must be together to recover the image. Secret Image Sharing (SIS) provides this feature by sending meaningless shares to n participants, and k or more shares must be available to recover the secret image, where k ≤ n. Furthermore, Multi-Secret Image Sharing (MSIS) was introduced, where multiple images are simultaneously shared instead of only one image. This research proposed different, simple, and efficient approaches for SIS and MSIS using the number theory concepts, such as polynomial interpolation, and Chinese Remainder Theorem (CRT), and various chaotic systems, such as Lorenz and Rossler systems as Pseudo-Random Number Generator (PRNG). In this research, several tests have shown good randomness of the different PRNGs. The proposed approaches worked on sharing any number or type of images, such as binary, grayscale, and color images, with lossless recovery. Security analysis and comparisons with related literature were also introduced with good results, including statistical tests such as Root Mean Square Error (RMSE), correlation, entropy, and the National Institute of Standards and Technology (NIST) SP-800-22 test suite. In addition, they passed several attacks, such as differential attacks, noise and crop attacks, and other tests, such as key sensitivity tests and performance analysis, where the systems used long sensitive system keys. Keywords: Chaos theory, Number theory, Pseudo-Random Number Generator (PRNG), Secret Image Sharing (SIS), Visual Secret Sharing (VSS)
546 _aText in English, abstracts in English and Arabic
650 4 _aInformatics-IFM
_9266
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aInformatics-IFM
_9266
942 _2ddc
_cTH
999 _c10997
_d10997