000 05477nam a22002657a 4500
008 201210b2024 a|||f bm|| 00| 0 eng d
024 7 _a0000-0002-5903-6409
_2ORCID
040 _aEG-CaNU
_cEG-CaNU
041 0 _aeng
_beng
_bara
082 _a621
100 0 _aAhmed Tarek Mohamed Ibrahim
_93283
245 1 _aPV Modeling with MPPT Using Different Optimization Techniques
_c/Ahmed Tarek Mohamed Ibrahim
260 _c2024
300 _a84 p.
_bill.
_c21 cm.
500 _3Supervisor: Ahmed G. Radwan
502 _aThesis (M.A.)—Nile University, Egypt, 2024 .
504 _a"Includes bibliographical references"
505 0 _aContents: Contents Page Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapters: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Photovoltaic (PV) modelling . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Empirical models . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Numerical models . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.3 Analytical models . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Meta-Heuristic Techniques . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Single solution-based techniques . . . . . . . . . . . . . . . . 27 2.3.2 Population based techniques . . . . . . . . . . . . . . . . . . 28 2.3.3 Recent advancements and hybrid approaches . . . . . . . . 32 2.4 Maximum Power Point Tracking (MPPT) . . . . . . . . . . . . . . 34 2.4.1 Conventional MPPT Techniques . . . . . . . . . . . . . . . 35 5 2.4.2 Global MPPT Techniques . . . . . . . . . . . . . . . . . . . 40 2.4.3 Hybrid MPPT Techniques . . . . . . . . . . . . . . . . . . . 44 3. PV Modeling using different optimization techniques . . . . . . . . . . . 46 3.1 Meta-Heuristic Optimization Techniques for PV Parameters Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Water Cycle Algorithm (WCA) . . . . . . . . . . . . . . . . 47 3.1.2 The Arithmetic Optimization Algorithm (AOA) . . . . . . . 49 3.2 The PV mathematical model . . . . . . . . . . . . . . . . . . . . . 55 3.3 Problem Formulation, Results and Discussion . . . . . . . . . . . . 57 3.4 PI and FOPI Controller . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 DC-DC converter control method . . . . . . . . . . . . . . . . . . . 65 3.6 DC-DC converter results with different controller types . . . . . . . 68 4. Improved MPPT for Partially Shaded PV Systems through Accelerated Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 The Mathematical Model of the used PV Model . . . . . . . . . . . 76 4.2 DC–DC Converter Design . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Proposed MPPT algorithm . . . . . . . . . . . . . . . . . . . . . . 79 4.3.1 Particle Swarm Optimization Algorithm(PSO) . . . . . . . 79 4.3.2 Accelerated PSO Algorithm(APSO) . . . . . . . . . . . . . 81 4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 86 6. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
520 3 _aAbstract: The usage of PV systems as an effective source of renewable energy has increased significantly in recent years. However, PV systems are inherently nonlinear and affected by varying weather conditions, which makes it challenging to get the maximum power from the system. This thesis proposes the use of optimization techniques to model PV systems and achieve MPPT under varying conditions of weather. A comprehensive literature review is conducted to identify the relevant optimization techniques and MPPT algorithms. A mathematical model of a PV system is developed that captures its behavior under varying weather conditions, and the selected optimization algorithms are integrated into the model to achieve MPPT. The performance of the optimization techniques and MPPT algorithms is validated using real data from a real PV system, and the results are compared with conventional MPPT techniques. The proposed approach demonstrates the effectiveness of optimization techniques in modeling PV systems and achieving MPPT, and provides insights into the design and optimization of PV systems for practical applications. Keywords: PV Modules , Optmization Techniques, Maximum Power Point Tracking (MPPT), Metaheuristic Algorithms.
546 _aText in English, abstracts in English and Arabic
650 4 _aMSD
_9317
655 7 _2NULIB
_aDissertation, Academic
_9187
690 _aMSD
_9317
942 _2ddc
_cTH
999 _c10514
_d10514