TY - BOOK AU - Omar AbouBakr Mehanna TI - The Design of Cognitive MAC Protocols / U1 - 005 PY - 2009/// KW - Wireless Technologies KW - NULIB KW - Dissertation, Academic N1 - Thesis (M.A.)—Nile University, Egypt, 2009; "Includes bibliographical references"; Contents: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Spectrum Sensing Methods . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Experimental Results using WARP . . . . . . . . . . . . . . . . . . 10 3. Slotted Primary Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Full Sensing Capability: L = N . . . . . . . . . . . . . . . . . . . . 14 3.2 Limited Sensing Capability: L < N . . . . . . . . . . . . . . . . . . 21 3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ix 4. Un-slotted Primary Network . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1 Multiple Channel Access . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Single Channel Access . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Appendices: A. Derivation of Whittle's Index . . . . . . . . . . . . . . . . . . . . . . . . 46 B. Derivation of ±1 i (t) and ±0 i (t) . . . . . . . . . . . . . . . . . . . . . . . . . 51 Bibliography . . N2 - Abstract: The radio spectrum resource is of fundamental importance to wireless communica- tion. Recent reports show that most available spectrum has been allocated. However, most of licensed spectrum resources are under-utilized. This observation has encour- aged the emergence of dynamic and opportunistic spectrum access concepts, where secondary (unlicensed) users equipped with cognitive radios are allowed to opportunis- tically access the spectrum as long as they do not interfere with primary (licensed) users. To achieve this goal, the secondary users must monitor the primary tra±c in order to identify spectrum holes or opportunities which can be exploited to transfer data. In this thesis, we consider the design of cognitive MAC protocols enabling a sec- ondary transmitter-receiver pair to communicate over the idle periods of a set of primary channels. More speci¯cally, we propose cognitive MAC protocols optimized for both slotted and un-slotted primary networks. For the slotted structure, the ob- jective is to maximize the secondary throughput while maintaining synchronization between the secondary pair and not causing interference to the primary network. Our investigations di®erentiate between two sensing scenarios. In the ¯rst, the secondary transmitter is capable of sensing all the primary channels, whereas it senses only a subset of the primary channels in the second scenario. In both cases, we propose blind MAC protocols that e±ciently learn the statistics of the primary tra±c on-line iv and asymptotically achieve the throughput obtained when prior knowledge of pri- mary tra±c statistics is available. For the un-slotted structure, the objective is to maximize the secondary throughput while satisfying an interference constraint on the primary network. Sensing-dependent periods are optimized for each primary channel yielding a MAC protocol which outperforms previously proposed techniques that rely on a single sensing period optimization ER -