Karim Mansour

A Hybrid Deep CNN-Reinforcement Learning Model for Autonomous Driving / Karim Mansour - 2018 - 108 p. ill. 21 cm.

Supervisor: Mohamed A. El-Helw

Thesis (M.A.)—Nile University, Egypt, 2018 .

"Includes bibliographical references"

Contents:
1 CHAPTER 1: INTRODUCTION ................................................................................ 1
1.1 Motivation ............................................................................................................ 1
1.2 Problem Definition ............................................................................................... 1
1.3 Thesis Contributions ............................................................................................ 2
1.4 Autonomous Driving and Artificial Intelligence ................................................. 2
1.5 Organization of Thesis ......................................................................................... 2
2 CHAPTER 2: LITERATURE REVIEW ..................................................................... 4
2.1 Introduction .......................................................................................................... 4
2.2 Autonomous Driving ............................................................................................ 4
2.2.1 5 Levels of Autonomy .................................................................................. 5
2.2.1.1 Level 1: One Control Automated .............................................................. 5
2.2.1.2 Level 2: Two Controls Automated ............................................................ 6
2.2.1.3 Level 3: City to City Automation .............................................................. 7
2.2.1.4 Level 4: Full Autonomous......................................................................... 9
2.2.1.5 Level 5: No Driver .................................................................................. 10
2.2.2 Autonomous Driving Block Diagram ......................................................... 10
2.3 Artificial Intelligence ......................................................................................... 11
2.3.1 Machine Learning ....................................................................................... 11
2.3.2 Deep Learning ............................................................................................. 11
2.3.2.1 Convolutional Neural Networks.............................................................. 13
2.3.2.2 Reinforcement Learning .......................................................................... 14
2.3.3 Recurrent Neural Networks ........................................................................ 14
2.4 Rule-Based Control Systems .............................................................................. 15
2.4.1 PID Controller ............................................................................................. 15
2.4.2 Automotive Rule-Based Systems ............................................................... 16
2.4.3 Advantages and Disadvantages ................................................................... 17
2.5 End-to-End Deep Learning ................................................................................ 17
2.5.1 Advantages and Disadvantages ................................................................... 18
2.5.2 Existing End-to-End Deep Learning Networks .......................................... 18
2.5.2.1 CNN Only Steering: NVIDIA Model ..................................................... 19
2.5.2.2 CNN + LSTM Steering: VALEO Model ................................................ 21
2.5.2.3 Reinforcement Learning Steering: STANFORD Model ......................... 23
2.6 Conclusions ....................................................................................................... 25
3 CHAPTER 3: NOVEL CNN-REINFORCEMENT LEARNING STEERING MODEL
26
ix
3.1 Introduction ........................................................................................................ 26
3.2 Sensors Setup ..................................................................................................... 27
3.2.1 Camera ........................................................................................................ 27
3.2.2 Lidar ............................................................................................................ 28
3.2.3 Steering Angles ........................................................................................... 29
3.3 Deep Network Architecture to Predict Future Steering Angles ......................... 30
3.3.1 Model Architecture ..................................................................................... 30
3.3.1.1 CNN-Only Model Limitations ................................................................ 34
3.3.2 Predicting Travel Path Instead of Steering ................................................. 34
3.4 Adding Vehicle Speed ........................................................................................ 38
3.5 Hybrid Model ..................................................................................................... 40
3.5.1 Free Space Acquisition ............................................................................... 41
3.5.1.1 Cameras ................................................................................................... 41
3.5.1.2 Lidar ........................................................................................................ 41
3.5.2 Real-time Reward Integration ..................................................................... 42
3.6 Conclusion .......................................................................................................... 48
4 CHAPTER 4: EXPERIMENTS AND RESULTS .................................................... 50
4.1 Introduction ........................................................................................................ 50
4.2 Country Road Driving Simulator ....................................................................... 50
4.3 Datasets .............................................................................................................. 54
4.4 Data Augmentation ............................................................................................ 56
4.4.1 Data Processing ........................................................................................... 56
4.4.1.1 Data Flipping ........................................................................................... 56
4.4.1.2 Contrast Modifications ............................................................................ 57
4.4.1.3 Shadow Addition ..................................................................................... 57
4.4.2 Extra Sensors for Data Augmentation ........................................................ 58
4.4.2.1 Angled Cameras ...................................................................................... 58
4.4.2.2 Distanced Cameras .................................................................................. 58
4.5 Results ................................................................................................................ 59
4.5.1 Test Track ................................................................................................... 59
4.5.2 Metrics Used ............................................................................................... 59
4.5.2.1 Mean Square Error .................................................................................. 59
4.5.2.2 Validation Loss ....................................................................................... 60
4.5.2.3 Learning Rate .......................................................................................... 60
4.5.3 NVIDIA Model Results .............................................................................. 60
4.5.4 Predicting Future Steering Angles .............................................................. 62
4.5.4.1 One Second into Future ........................................................................... 62
4.5.4.2 Two Seconds into Future......................................................................... 63
4.5.5 Speed Integration ........................................................................................ 65
x
4.5.6 Free Space Only Results ............................................................................. 67
4.5.7 Autonomous Driving Hybrid Model ........................................................... 69
4.6 Conclusion .......................................................................................................... 74
5 CHAPTER 5: CONCLUSIONS AND FUTURE WORK ........................................ 76
5.1 Conclusions ........................................................................................................ 76
5.2 Avoiding Objects................................................................................................ 77
5.3 Different Vehicles Data ...................................................................................... 77
5.4 Human Brain Comparison .................................................................................. 77
5.5 End-to-End Deep Learning Limitations Overcome ........................................... 78
5.6 Safety and Reliability Considerations ................................................................ 78
6 APPENDIX – DESCRIPTION OF USED LIBRARIES .......................................... 79
6.1 Python................................................................................................................. 79
6.2 TensorFlow......................................................................................................... 79
6.3 Keras................................................................................................................... 80
6.4 Unity ................................................................................................................... 80
7 REFERENCES ..........................................................................................................

Abstract:
Nowadays, to reduce the number of accidents and to increase cars safety levels, all car
manufacturers are racing to reach high level of autonomy to achieve driverless cars as soon as
possible. The conventional ways to achieve the current Advanced Driving Assistance Systems
(ADAS) of controlling the vehicle using traditional control theory proved to be not enough to
handle the unlimited scenarios of autonomous driving in a city environment. It became clear that
the usage of Artificial Intelligence (AI) in terms of deep learning is needed to aid the current ADAS
systems (e.g. Adaptive Cruise Control and Lane Keeping) to reach high level of autonomy using
big data. Currently, the automotive industry is using deep learning excessively in classifying
objects captured by on-board sensors (e.g. cameras), but lately there are many researches being
done to use deep learning to control the steering using Convolutional Neural Networks (CNN) for
raw camera images, or Reinforcement Learning (RL) to learn from mistakes using huge amount
of simulated data. The limitation of the CNN-only solution is that it lacks live-feedback to correct
it-self, and in CNNs using Long-Short-Term-Memory (LSTM) layers to reduce the noise in
steering, they suffer from the need of high computational power on-board. On the other hand, the
RL-only solution is relying heavily on simulations due to the nature of RL of learning from doing
mistakes; therefore, RL cannot be used easily with real-life data. On top of that, both solutions are
not considering the speed of the vehicle as an input but relying only on raw data from the frontcamera,
which leads to a system that only works on constant velocities.
This thesis proposes a novel CNN-Reinforcement hybrid solution where both CNN and
RL are being used at the same time in a supervised mode to provide a live feedback that can be
used in real-life data not only in simulations. It also proposes a major modification in the traditional
CNN architecture to let the neural network predict the path of driving instead of steering angle to
reduce the noise on the output and to avoid using LSTMs which require huge amount of
computational power. Besides that, the architecture has been altered for considering the velocity
of the vehicle to ensure smooth driving at different speeds. The different approaches available in
the research community are reviewed in detail. Experiments and tests are done using computer
simulations on both Hybrid and CNN-only solution and the results are examined in details. Finally,
future work is discussed to enhance the system for better and safer driving.


Text in English, abstracts in English.


Informatics-IFM


Dissertation, Academic

610