TY - BOOK AU - Roman,Steven TI - Advanced linear algebra / T2 - Graduate texts in mathematics ; SN - 0387247661 U1 - 512.5 22 PY - 2005/// CY - New York : PB - Springer, KW - CIT KW - MOT KW - ITS KW - Algebras, Linear N1 - Includes bibliographical references (p. [473]-474) and index; Ch. 0.; Preliminaries --; Pt. 1.; Preliminaries --; Matrices --; Determinants --; Polynomials. Functions --; Equivalence Relations --; Zorn’s Lemma --; Cardinality --; Pt. 2.; Algebraic Structures --; Groups --; Rings --; Integral Domains --; Ideals and Principal Ideal Domains --; Prime Elements --; Fields --; The Characteristic of a Ring --; Pt. 1.; Basic Linear Algebra --; Ch. 1.; Vector Spaces --; Vector Spaces --; Subspaces --; The Lattice of Subspaces --; Direct Sums --; Spanning Sets and Linear Independence --; The Dimension of a Vector Space --; The Row and Column Space of a Matrix --; Coordinate Matrices --; Exercises --; Ch. 2.; Linear Transformations --; Linear Transformations --; The Kernel and Image of a Linear Transformation --; Isomorphisms --; The Rank Plus Nullity Theorem --; Linear Transformations from F[superscript n] to F[superscript m] --; Change of Basis Matrices --; The Matrix of a Linear Transformation --; Change of Bases for Linear Transformations --; Equivalence of Matrices --; Similarity of Matrices --; Invariant Subspaces and Reducing Pairs --; Exercises --; Ch. 3.; Isomorphism Theorems --; Quotient Spaces --; The First Isomorphism Theorem --; The Dimension of a Quotient Space --; Additional Isomorphism Theorems --; Linear Functionals --; Dual Bases --; Reflexivity --; Annihilators --; Operator Adjoints --; Exercises --; Ch. 4.; Modules I --; Motivation --; Modules --; Submodules --; Direct Sums --; Spanning Sets --; Linear Independence --; Homomorphisms --; Free Modules --; Summary --; Exercises --; Ch. 5.; Modules II --; Quotient Modules --; Quotient Rings and Maximal Ideals --; Noetherian Modules --; The Hilbert Basis Theorem --; Exercises --; Ch. 6.; Modules over Principal Ideal Domains --; Free Modules over a Principal Ideal Domain --; Torsion Modules --; The Primary Decomposition Theorem --; The Cyclic Decomposition Theorem for Primary Modules --; Uniqueness --; The Cyclic Decomposition Theorem --; Exercises --; Ch. 7.; Structure of a Linear Operator --; A Brief Review --; The Module Associated with a Linear Operator --; Submodules and Invariant Subspaces --; Orders and the Minimal Polynomial --; Cyclic Submodules and Cyclic Subspaces --; Summary --; The Decomposition of V. --; The Rational Canonical Form --; Exercises --; Ch. 8.; Eigenvalues and Eigenvectors --; The Characteristic Polynomial of an Operator --; Eigenvalues and Eigenvectors --; The Cayley-Hamilton Theorem --; The Jordan Canonical Form --; Geometric and Algebraic Multiplicities --; Diagonalizable Operators --; Projections --; The Algebra of Projections --; Resolutions of the Identity --; Projections and Diagonalizability --; Projections and Invariance --; Exercises --; Ch. 9.; Real and Complex Inner Product Spaces --; Introduction --; Norm and Distance --; Isometries --; Orthogonality --; Orthogonal and Orthonormal Sets --; The Projection Theorem --; The Gram-Schmidt Orthogonalization Process --; The Riesz Representation Theorem --; Exercises --; Ch. 10.; Spectral Theorem for Normal Operators --; The Adjoint of a Linear Operator --; Orthogonal Diagonalizability --; Motivation --; Self-Adjoint Operators --; Unitary Operators --; Normal Operators --; Orthogonal Diagonalization --; Orthogonal Projections --; Orthogonal Resolutions of the Identity --; The Spectral Theorem --; Functional Calculus --; Positive Operators --; The Polar Decomposition of an Operator --; Exercises --; Pt. 2.; Topics --; Ch. 11.; Metric Vector Spaces --; Symmetric, Skew-symmetric and Alternate Forms --; The Matrix of a Bilinear Form --; Quadratic Forms --; Linear Functionals --; Orthogonality --; Orthogonal Complements --; Orthogonal Direct Sums --; Quotient Spaces --; Symplectic Geometry - Hyperbolic Planes --; Orthogonal Geometry - Orthogonal Bases --; The Structure of an Orthogonal Geometry --; Isometries --; Symmetries --; Witt’s Cancellation Theorem --; Witt’s Extension Theorem --; Maximum Hyperbolic Subspaces --; Exercises --; Ch. 12.; Metric Spaces --; The Definition --; Open and Closed Sets --; Convergence in a Metric Space --; The Closure of a Set --; Dense Subsets --; Continuity --; Completeness --; Isometries --; The Completion of a Metric Space --; Exercises --; Ch. 13.; Hilbert Spaces --; A Brief Review --; Hilbert Spaces --; Infinite Series --; An Approximation Problem --; Hilbert Bases --; Fourier Expansions --; A Characterization of Hilbert Bases --; Hilbert Dimension --; A Characterization of Hilbert Spaces --; The Riesz Representation Theorem --; Exercises --; Ch. 14.; Tensor Products --; Free Vector Spaces --; Another Look at the Direct Sum --; Bilinear Maps and Tensor Products --; Properties of the Tensor Product --; The Tensor Product of Linear Transformations --; Change of Base Field --; Multilinear Maps and Iterated Tensor Products --; Alternating Maps and Exterior Products --; Exercises --; Ch. 15.; Affine Geometry --; Affine Geometry --; Affine Combinations --; Affine Hulls --; The Lattice of Flats --; Affine Independence --; Affine Transformations --; Projective Geometry --; Exercises --; Ch. 16.; Umbral Calculus --; Formal Power Series --; The Umbral Algebra --; Formal Power Series as Linear Operators --; Sheffer Sequences --; Examples of Sheffer Sequences --; Umbral Operators and Umbral Shifts --; Continuous Operators on the Umbral Algebra --; Operator Adjoints --; Automorphisms of the Umbral Algebra --; Derivations of the Umbral Algebra --; Exercises ER -