WGCHE - Weighted Grading Cluster Head Election in Wireless Sensor Networks Sara Osama Ismail Elrefaey
Material type:
TextLanguage: English Summary language: English Publication details: 2015Description: 89 p. ill. 21 cmSubject(s): Genre/Form: DDC classification: - 658
| Item type | Current library | Call number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|
Thesis
|
Main library | 658/ S.E.W 2015 (Browse shelf(Opens below)) | Not For Loan |
Browsing Main library shelves Close shelf browser (Hides shelf browser)
|
|
|
No cover image available No cover image available | No cover image available No cover image available | No cover image available No cover image available |
|
||
| 658 / RO.M 2007 Management / | 658 / RO.M 2009 Management / | 658 / RU.M 2009 Management : | 658/ S.E.W 2015 WGCHE - Weighted Grading Cluster Head Election in Wireless Sensor Networks | 658 / S.S.R / 2019 Random Access Memory Forensics Methodology for Investigating Cryptocurrency Protocols | 658/ S.T.I 2015 Interoperability of IT and Legal Realms of Cloud Computing | 658 / SC.E Exploring Management / |
Supervisor: Nashwa Abd El-Baki
Thesis (M.A.)—Nile University, Egypt, 2015 .
"Includes bibliographical references"
Contents:
1 Introduction 1
1.1 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 WSN Background 3
2.1 Wireless Sensor Networks Applications . . . . . . . . . . . . . . . . . . . . 4
2.2 Characteristics of WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 WSN Risks & Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 WSN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Flat based routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Hierarchical based routing . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Location based routing . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Energy Conservation using Routing Protocols . . . . . . . . . . . . . . . . 13
2.5.1 Clustering phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Cluster Head Selection Techniques 16
3.1 CH selection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Power Based Selection . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1.1 The LEACH updates . . . . . . . . . . . . . . . . . . . . 17
3.1.1.2 Improvement to lifetime . . . . . . . . . . . . . . . . . . . 19
3.1.2 Location based Selection . . .
3.1.2.1 Improvement to lifetime . . . . . . . . . . . . . . . . . . . 21
3.1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Security aware selection . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Number of Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Comparison between Selection Algorithms . . . . . . . . . . . . . . . . . . 26
4 Weighted Grading Scheme 30
4.1 Proposed scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Sensor node components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2.2 Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2.3 External memory . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2.4 Power source . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2.5 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Network Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Clustering Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Routing mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Electing rst CH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Networks Half-life . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.5 Security Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.5.1 Security Requirements . . . . . . . . . . . . . . . . . . . . 39
4.3.5.2 Encryption technique . . . . . . . . . . . . . . . . . . . . 40
4.3.5.3 Disguise the CH identity . . . . . . . . . . . . . . . . . . 40
4.3.6 Handling dying node . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.7 Sleep-awake modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Election Technique Validation 43
5.1 QoS Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.0.1 System Evaluation Metrics . . . . . . . . . . . . . . . . . 43
5.1.0.2 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.0.3 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.0.4 Response Time . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.0.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Individual node evaluation metrics . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Our basic assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 Why did we assume? . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6 Simulation Results & Analysis 50
6.1 Examining parameters individually . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Results of Combined Equation . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1 Comparison with LEACH . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Comparison with LTILA . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.3 Security Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 QoS Comparison . . . . . .
6.4 Improving parameters eect . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.1 Setting thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7 Conclusions & Future Work 62
7.1 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Future Work . . . . .
Abstract:
Wireless Sensor Networks (WSNs) consist of a collection of cheap, easy to deploy Sensor
nodes arranged together to fulll a specic purpose (monitoring, tracking etc. A WSN
network is composed of a Base Station (BS) and collection of sensors. There are a lot of
approaches for the network construction. Amongst them is the hierarchical structure,
where the network is divided into clusters and the node inside this cluster communicates
with BS through a chosen leader called Cluster Head (CH). In this paper, we present
cluster-Head election algorithms for WSNs. We will discuss the operations of these
algorithms, and compare their performance. As well as proposing a new CH election
Scheme that takes into account the transmission power as well as the network security.
Choosing the right cluster head with the best security odds has the eect of increasing
the network lifetime signicantly as well as improving the network throughput, and
reducing the level of corrupt data and other threats that faces a network under attack.
Our scheme has multiple parameters to evaluate a node. The scheme is evaluated against
LEACH algorithm and The Lifetime Improvement of LEACH algorithm and it showed
better results in both increasing the networks lifetime and decreasing the number of
malicious nodes elected as CH's. . . .
Text in English, abstracts in English and Arabic
There are no comments on this title.