Pattern recognition / Sergios Theodoridis, Konstantinos Koutroumbas.
Material type:
TextPublication details: Amsterdam ; London : Elsevier/Academic Press, c2009.Edition: 4th edDescription: a xvii, 961 p. : ill. ; 25 cmISBN: - 1597492728 (hbk.)
- 9781597492720
- 006.4 22
| Item type | Current library | Call number | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|
Books
|
Main library General Stacks | 006.4 / TH.P 2009 (Browse shelf(Opens below)) | 1 | Available | 004244 |
Browsing Main library shelves, Shelving location: General Stacks Close shelf browser (Hides shelf browser)
|
|
|
|
|
|
|
||
| 006.4 / RI.P1996 Pattern recognition and neural networks / | 006.4 / ST.C 2004 Computer manual in MATLAB to accompany Pattern classification, second edition / | 006.4 / ST.C 2004 Computer manual in MATLAB to accompany Pattern classification, second edition / | 006.4 / TH.P 2009 Pattern recognition / | 006.4 / WE.S 2002 Statistical pattern recognition / | 006.4 / WE.S 2002 Statistical pattern recognition / | 006.4 / WE.S 2002 Statistical pattern recognition / |
Previous ed.: Amsterdam: Academic, 2003.
Includes bibliographical references and index.
1. Introduction -- 2. Classifiers based on Bayes Decision -- 3. Linear Classifiers -- 4. Nonlinear Classifiers -- 5. Feature Selection -- 6. Feature Generation I: Data Transformation and Dimensionality Reduction -- 7. Feature Generation II -- 8. Template Matching -- 9. Context Depedant Clarification -- 10. System Evaultion -- 11. Clustering: Basic Concepts -- 12. Clustering Algorithms: Algorithms L Sequential -- 13. Clustering Algorithms II: Hierarchical -- 14. Clustering Algorithms III: Based on Function Optimization -- 15. Clustering Algorithms IV: Clustering -- 16. Cluster Validity.
This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback.
1
There are no comments on this title.