Real-Time Stream Processing For Recommendation Engine(s)/ (Record no. 9982)

MARC details
000 -LEADER
fixed length control field 09227nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2023 a|||f bm|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mohamed Reda Zohair Ali Bennawy
245 1# - TITLE STATEMENT
Title Real-Time Stream Processing For Recommendation Engine(s)/
Statement of responsibility, etc. Mohamed Reda Zohair Ali Bennawy
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2023
300 ## - PHYSICAL DESCRIPTION
Extent 75 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Walid Al-Atabany
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2023 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>List of Abbreviations.................................................................................................................. i<br/>List of Tables............................................................................................................................. ii<br/>List of Figures .......................................................................................................................... iii<br/>Chapter 1: Introduction...............................................................................................................1<br/>1.1 Motivation ........................................................................................................................1<br/>1.2 Problem Statement ...........................................................................................................1<br/>1.3 User Stories ......................................................................................................................2<br/>1.4 Challenges........................................................................................................................3<br/>1.5 Summary of Contributions...............................................................................................3<br/>1.6 Thesis Outline...................................................................................................................4<br/>Chapter 2: Literature Survey ......................................................................................................5<br/>2.1 Introduction ......................................................................................................................5<br/>2.2. Data Architecture ............................................................................................................6<br/>2.3 Use Cases .........................................................................................................................9<br/>2.4 Frameworks....................................................................................................................12<br/>2.5 Comparison ....................................................................................................................22<br/>2.6 Architecture ....................................................................................................................24<br/>2.6.1 Benefits of modern stream processing architecture .................................................25<br/>2.7 Session-based Recommender Systems...........................................................................26<br/>2.8 Evaluation of any recommender system:........................................................................27<br/>2.8.1 A/B Testing..............................................................................................................27<br/>2.8.2 Rating Prediction Accuracy .....................................................................................28<br/>2.8.3 Ranking Measures....................................................................................................29<br/>2.8.4 Hit Rates Measures..................................................................................................30<br/>2.8.5 Diversity Measures..................................................................................................31<br/>2.9 Recommender Model Types...........................................................................................32<br/>2.9.1 Content-Based Recommender System.....................................................................33<br/>2.9.2 Collaborative Filtering Recommender System........................................................34<br/>Chapter 3: Methodology...........................................................................................................42<br/>3.1 Introduction ....................................................................................................................42<br/>3.2 E-Tourism Datasets........................................................................................................42<br/>3.3 Trivago Dataset Description...........................................................................................43<br/>3.3.1 Overview..................................................................................................................43<br/>3.3.2 Files Description ......................................................................................................46<br/>3.3.3 Descriptive Analysis................................................................................................46<br/>Chapter 4: Results and Discussions..........................................................................................52<br/>4.1 Experiments....................................................................................................................52<br/>4.2 Evaluation Metrics .........................................................................................................52<br/>4.3 Experiments....................................................................................................................53<br/>4.4 Benchmarks....................................................................................................................53<br/>4.5 Proposed Solution...........................................................................................................56<br/>Chapter 5: Conclusions and Future Work ................................................................................58<br/>5.1 Conclusion......................................................................................................................58<br/>5.2 Future directions.............................................................................................................59<br/>References................................................................................................................................6
520 3# - Abstract
Abstract Abstract:<br/>Event stream processing (ESP) is a data processing methodology which tackle online <br/>processing for a variety of events. Recently stream processing witnessed a huge <br/>interest in both academic research and corporate use cases. As a consequence, for the <br/>extremely huge data sources recently generated and diversely of usage. Data sources <br/>vary from websites logs, social media feeds, news articles, internal business <br/>transactions, IoT devices logs, ... etc. Academically, a lot of research papers discuss <br/>how to deal with enormous cloud of events in real-time with different data structures <br/>such as text, video, logs, transactions, … etc. Aside with, highlighting the weakness <br/>and strength points of the streaming platforms technologies. From corporate point of <br/>view, decision makers ask about how to best utilize those events with minimal delay <br/>in order to 1) uncover insights in real-time, 2) mine textual events, 3) recommend <br/>decisions. This requires a mix of machine learning, stream processing technologies <br/>and modern architecture to achieve best utilization with low latency. Unfortunately, <br/>each technology is typically optimized independently therefore, it is a challenge to <br/>combine all technologies together and have a scalable real-world application. <br/>Through the thesis, we shall discuss the state-of-the-art event stream processing <br/>technologies by summarizing definitions, data flow architectures, use cases, <br/>frameworks, and architecture best practices Also, we propose a recommendation <br/>engine architecture to perfectly cope with a real-life data stream in the E-Tourism <br/>domain.<br/>The Association for Computing Machinery ACM recommendation systems challenge <br/>(ACM RecSys) [1] released an e-tourism dataset for the first time in 2019. Challenge <br/>shared hotel booking sessions from the trivago website asking to rank the hotel`s list <br/>for the users. The better ranking should achieve a high click-out rate. We introduce a<br/>state of art architecture and a session-based recommender system on top of portal <br/>streaming data. Proposed solution take into consideration both recommendation <br/>engine accuracy and a low latency architecture. Compared to different benchmark <br/>publications on same dataset, proposed solution outperform in time with 10x faster <br/>using only 2% of computational power used. Paper shared the architecture and <br/>recommendation engine into details taking into consideration the ability to deploy the<br/>model into real-life production environments.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 03/04/2023   610/ M.Z.R / 2023 03/04/2023 03/04/2023 Thesis