Agricultural Internet Of Things, Low Power Wide Area Network, Firmware-Over-The Air/ (Record no. 9937)

MARC details
000 -LEADER
fixed length control field 07937nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2022 a|||f bm|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 627
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Samy Hamed Mohamed Sharf
245 1# - TITLE STATEMENT
Title Agricultural Internet Of Things, Low Power Wide Area Network, Firmware-Over-The Air/
Statement of responsibility, etc. Samy Hamed Mohamed Sharf
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2022
300 ## - PHYSICAL DESCRIPTION
Extent 105 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Ahmed H. Madian
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2022 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/><br/>Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>1.2 Research Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>1.4 Thesis Target Approach Organization . . . . . . . . . . . . . . . . 7<br/>1.5 [AG IoT]-Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.6 [AG IoT]-Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.7 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.1 Overview of Internet of Things in Ag-IoT . . . . . . . . . . . . . . 10<br/>2.2 Ag-IoT communication technologies . . . . . . . . . . . . . . . . . 10<br/>2.2.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2.2 RFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2.3 Mobile communication . . . . . . . . . . . . . . . . . . . . . 11<br/>2.2.4 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>6<br/>2.2.5 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>2.3 Precision Agriculture WSN Sensors . . . . . . . . . . . . . . . . . . 13<br/>2.3.1 Electrical and Electromagnetic Sensors . . . . . . . . . . . . 14<br/>2.3.2 Optical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>2.3.3 Mechanical Sensors for Crop . . . . . . . . . . . . . . . . . . 14<br/>2.3.4 Acoustic and Air Flow Sensors . . . . . . . . . . . . . . . . 15<br/>2.3.5 Electrochemical Sensors . . . . . . . . . . . . . . . . . . . . 15<br/>2.4 IoT-based smart agriculture . . . . . . . . . . . . . . . . . . . . . . 15<br/>2.5 Principal advantages of IoT in smart agriculture . . . . . . . . . . . 16<br/>2.6 Ag-IoT Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.6.1 DHT11 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.6.2 Water Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.7 Challenges for Agriculture . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.8 Ag-IoT Data Communication Protocol . . . . . . . . . . . . . . . . 18<br/>2.9 Ag-IoT Supported Low-Power Microcontroller . . . . . . . . . . . . 18<br/>2.10 FOTA Architecture Overview . . . . . . . . . . . . . . . . . . . . . 18<br/>3. On Flashing Over The Air ”FOTA” for IoT Appliances - An ATMEL<br/>Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . 42<br/>3.1.3 Software Implementation . . . . . . . . . . . . . . . . . . . 46<br/>3.2 Experimental Works . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.2.1 Remote Programming Applications . . . . . . . . . . . . . . 48<br/>3.2.2 Wi-Fi Remote Flashing . . . . . . . . . . . . . . . . . . . . 50<br/>3.2.3 LoRa Remote Flashing . . . . . . . . . . . . . . . . . . . . . 51<br/>4. An Efficient OTA firmware updating Architecture based on LoRa suitable<br/>for agricultural IoT Applications . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 55<br/>4.2 The Proposed System Implementation . . . . . . . . . . . . . . . . 56<br/>4.2.1 LoRa Firmware Uploader Circuit Interpretation . . . . . . . 56<br/>4.3 Simulation & Excremental Execution . . . . . . . . . . . . . . . . . 58<br/>4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br/>4.3.2 Excremental Work . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5. ETA32 Training Board Of Innovative Agriculture Simulation . . . . . . . 63<br/>5.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 63<br/>7<br/>6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br/>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
520 3# - Abstract
Abstract Abstract:<br/>In An agricultural from perspective Internet of things-IoT domain known as “AgIoT”. These lands lacking of wireless internet connectivity infrastructure. One of<br/>the big issues in this domain are how to gathering, manipulate and transfer data<br/>wirelessly with a revitalization performance and considerate rationing of energy consumption. A low-power wide-area network (LPWAN) one of famous type of wireless<br/>telecommunication wide area network structured amid a set of low bit rate operated<br/>depending on batteries.<br/>In some agricultural areas, there are obstacles to collecting, processing and transmit a set of data contain characteristics and information related to the environment<br/>suitable for the type of crops in a manner appropriate to their nature. This nature of<br/>crops is rapidly changed during the four seasons that shifting weather condition during the year. Increased Efficiency: Farmers can monitor the crops in real-time, and<br/>thus, forecast concerns and make educated choices before they arise. Less Consumption of Water and Energy: Sensors throughout the fields assist the farmers calculate<br/>the right resources necessary. Reduced Operation Costs: The utility of IoT provides<br/>higher revenues as it leads to less human intervention owing to automated procedures.<br/>Low Usage of Chemicals: IoT-based solutions let farmers convert to cost-effective and<br/>eco-friendly agricultural practises via much-reduced consumption of toxic pesticides<br/>and fertilisers. Better Food Quality: Through the methods stated above, producers<br/>14<br/>may create the circumstances required to increase the quality of the crops. Monitoring of Farms From Anywhere: Farming organisations may monitor several fields in<br/>diverse places from any part of the globe.<br/>Furthermore, in the scalability issue of these networks necessitates us to design<br/>and implement a “FOTA” paradigm that’s comprehensively fit for “LPWAN” network<br/>criteria. In this research we propose a complete architecture of an “LPWAN” networks<br/>that’s capable of providing “FOTA” Capabilities to a grouped of remote sensory nodes<br/>using a low power Micro-controller from PIC Families. We provide excremental work<br/>on flashing remote sensor node based on Wireless Sensor Network - WSN using LoRa<br/>module based on “LPWAN” approach to achieve the lowest energy consumption in<br/>this use case.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Software Engineering
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Software Engineering
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 211
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 211
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 01/09/2023   627/ S.S.A / 2022 01/09/2023 01/09/2023 Thesis