Agricultural Internet Of Things, Low Power Wide Area Network, Firmware-Over-The Air/ (Record no. 9937)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 07937nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 201210b2022 a|||f bm|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | EG-CaNU |
| Transcribing agency | EG-CaNU |
| 041 0# - Language Code | |
| Language code of text | eng |
| Language code of abstract | eng |
| -- | ara |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 627 |
| 100 0# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Samy Hamed Mohamed Sharf |
| 245 1# - TITLE STATEMENT | |
| Title | Agricultural Internet Of Things, Low Power Wide Area Network, Firmware-Over-The Air/ |
| Statement of responsibility, etc. | Samy Hamed Mohamed Sharf |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
| Date of publication, distribution, etc. | 2022 |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 105 p. |
| Other physical details | ill. |
| Dimensions | 21 cm. |
| 500 ## - GENERAL NOTE | |
| Materials specified | Supervisor: <br/>Ahmed H. Madian |
| 502 ## - Dissertation Note | |
| Dissertation type | Thesis (M.A.)—Nile University, Egypt, 2022 . |
| 504 ## - Bibliography | |
| Bibliography | "Includes bibliographical references" |
| 505 0# - Contents | |
| Formatted contents note | Contents:<br/><br/>Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>1.2 Research Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>1.4 Thesis Target Approach Organization . . . . . . . . . . . . . . . . 7<br/>1.5 [AG IoT]-Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.6 [AG IoT]-Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.7 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>2. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.1 Overview of Internet of Things in Ag-IoT . . . . . . . . . . . . . . 10<br/>2.2 Ag-IoT communication technologies . . . . . . . . . . . . . . . . . 10<br/>2.2.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2.2 RFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2.3 Mobile communication . . . . . . . . . . . . . . . . . . . . . 11<br/>2.2.4 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>6<br/>2.2.5 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>2.3 Precision Agriculture WSN Sensors . . . . . . . . . . . . . . . . . . 13<br/>2.3.1 Electrical and Electromagnetic Sensors . . . . . . . . . . . . 14<br/>2.3.2 Optical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>2.3.3 Mechanical Sensors for Crop . . . . . . . . . . . . . . . . . . 14<br/>2.3.4 Acoustic and Air Flow Sensors . . . . . . . . . . . . . . . . 15<br/>2.3.5 Electrochemical Sensors . . . . . . . . . . . . . . . . . . . . 15<br/>2.4 IoT-based smart agriculture . . . . . . . . . . . . . . . . . . . . . . 15<br/>2.5 Principal advantages of IoT in smart agriculture . . . . . . . . . . . 16<br/>2.6 Ag-IoT Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.6.1 DHT11 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.6.2 Water Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.7 Challenges for Agriculture . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.8 Ag-IoT Data Communication Protocol . . . . . . . . . . . . . . . . 18<br/>2.9 Ag-IoT Supported Low-Power Microcontroller . . . . . . . . . . . . 18<br/>2.10 FOTA Architecture Overview . . . . . . . . . . . . . . . . . . . . . 18<br/>3. On Flashing Over The Air ”FOTA” for IoT Appliances - An ATMEL<br/>Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1.1 System Block Diagram . . . . . . . . . . . . . . . . . . . . . 40<br/>3.1.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . 42<br/>3.1.3 Software Implementation . . . . . . . . . . . . . . . . . . . 46<br/>3.2 Experimental Works . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.2.1 Remote Programming Applications . . . . . . . . . . . . . . 48<br/>3.2.2 Wi-Fi Remote Flashing . . . . . . . . . . . . . . . . . . . . 50<br/>3.2.3 LoRa Remote Flashing . . . . . . . . . . . . . . . . . . . . . 51<br/>4. An Efficient OTA firmware updating Architecture based on LoRa suitable<br/>for agricultural IoT Applications . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 55<br/>4.2 The Proposed System Implementation . . . . . . . . . . . . . . . . 56<br/>4.2.1 LoRa Firmware Uploader Circuit Interpretation . . . . . . . 56<br/>4.3 Simulation & Excremental Execution . . . . . . . . . . . . . . . . . 58<br/>4.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br/>4.3.2 Excremental Work . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5. ETA32 Training Board Of Innovative Agriculture Simulation . . . . . . . 63<br/>5.1 The Paradigm FOTA Architecture . . . . . . . . . . . . . . . . . . 63<br/>7<br/>6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br/>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 |
| 520 3# - Abstract | |
| Abstract | Abstract:<br/>In An agricultural from perspective Internet of things-IoT domain known as “AgIoT”. These lands lacking of wireless internet connectivity infrastructure. One of<br/>the big issues in this domain are how to gathering, manipulate and transfer data<br/>wirelessly with a revitalization performance and considerate rationing of energy consumption. A low-power wide-area network (LPWAN) one of famous type of wireless<br/>telecommunication wide area network structured amid a set of low bit rate operated<br/>depending on batteries.<br/>In some agricultural areas, there are obstacles to collecting, processing and transmit a set of data contain characteristics and information related to the environment<br/>suitable for the type of crops in a manner appropriate to their nature. This nature of<br/>crops is rapidly changed during the four seasons that shifting weather condition during the year. Increased Efficiency: Farmers can monitor the crops in real-time, and<br/>thus, forecast concerns and make educated choices before they arise. Less Consumption of Water and Energy: Sensors throughout the fields assist the farmers calculate<br/>the right resources necessary. Reduced Operation Costs: The utility of IoT provides<br/>higher revenues as it leads to less human intervention owing to automated procedures.<br/>Low Usage of Chemicals: IoT-based solutions let farmers convert to cost-effective and<br/>eco-friendly agricultural practises via much-reduced consumption of toxic pesticides<br/>and fertilisers. Better Food Quality: Through the methods stated above, producers<br/>14<br/>may create the circumstances required to increase the quality of the crops. Monitoring of Farms From Anywhere: Farming organisations may monitor several fields in<br/>diverse places from any part of the globe.<br/>Furthermore, in the scalability issue of these networks necessitates us to design<br/>and implement a “FOTA” paradigm that’s comprehensively fit for “LPWAN” network<br/>criteria. In this research we propose a complete architecture of an “LPWAN” networks<br/>that’s capable of providing “FOTA” Capabilities to a grouped of remote sensory nodes<br/>using a low power Micro-controller from PIC Families. We provide excremental work<br/>on flashing remote sensor node based on Wireless Sensor Network - WSN using LoRa<br/>module based on “LPWAN” approach to achieve the lowest energy consumption in<br/>this use case. |
| 546 ## - Language Note | |
| Language Note | Text in English, abstracts in English and Arabic |
| 650 #4 - Subject | |
| Subject | Software Engineering |
| 655 #7 - Index Term-Genre/Form | |
| Source of term | NULIB |
| focus term | Dissertation, Academic |
| 690 ## - Subject | |
| School | Software Engineering |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | Thesis |
| 650 #4 - Subject | |
| -- | 211 |
| 655 #7 - Index Term-Genre/Form | |
| -- | 187 |
| 690 ## - Subject | |
| -- | 211 |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Main library | Main library | 01/09/2023 | 627/ S.S.A / 2022 | 01/09/2023 | 01/09/2023 | Thesis |