MARC details
| 000 -LEADER |
| fixed length control field |
09954nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
211216b2012 |||a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
620 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Ayman Amin Abdel Hamid |
| 245 1# - TITLE STATEMENT |
| Title |
Noble Metal Nanoparticles : |
| Remainder of title |
Green Synthesis and Application in KRAS Mutation Detection / |
| Statement of responsibility, etc. |
Ayman Amin Abdel Hamid |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2012 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
175 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| Materials specified |
Supervisor: Mohamed Abdel-Mottaleb |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2012 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>ACKNOWLEDGEMENTS ................................................................................................ v<br/>LIST OF FIGURES ........................................................................................................... ix<br/>LIST OF TABLES ............................................................................................................ xv<br/>LIST OF EQUATIONS ................................................................................................... xvi<br/>LIST OF ACRONYMS .................................................................................................. xvii<br/>ABSTRACT ........................................................................................................................ 1<br/>THESIS OBJECTIVES ...................................................................................................... 3<br/>THESIS OUTLINE ............................................................................................................. 5<br/>1 INTRODUCTION ...................................................................................................... 7<br/>1.1 History of Nanoscience and Technology ................................................................... 7<br/>1.2 Fabrication of Nanomaterials ..................................................................................... 8<br/>1.3 Characterization of Nanomaterials ............................................................................. 8<br/>1.4 Applications of Nanomaterials ................................................................................... 9<br/>1.5 Green Synthesis of Metal Nanoparticles .................................................................. 10<br/>1.5.1 Biosynthesis of Metal Nanoparticles Using Microorganisms .......................... 11<br/>1.5.2 Biosynthesis of Metal Nanoparticles Using Whole Plants ............................... 13<br/>1.5.3 Biosynthesis of Metal Nanoparticles Using Plant Extracts and Derivatives .... 15<br/>1.6 Applications of Noble Metal Nanoparticles ............................................................. 26<br/>1.6.1 Photothermal Applications................................................................................ 28<br/>1.6.2 Drug Delivery ................................................................................................... 28<br/>vii<br/>1.6.3 Biosensing ......................................................................................................... 29<br/>2 PHYTOSYNTHESIS OF Au, Ag AND Au-Ag BIMETALLIC NANOPARTICLES<br/>USING AQUEOUS EXTRACT OF SAGO PONDWEED (POTAMOGETON PECTINATUS<br/>L.) 46<br/>2.1 Aim of Work ............................................................................................................ 46<br/>2.2 Introduction .............................................................................................................. 46<br/>2.3 Materials and Methods ............................................................................................. 49<br/>2.3.1 Materials ........................................................................................................... 49<br/>2.3.2 Preparation of Aqueous Extract of Potamogeton Pectinatus L. ....................... 49<br/>2.3.3 Synthesis of Metal Nanoparticles ..................................................................... 49<br/>2.3.4 Stability Study ................................................................................................... 50<br/>2.3.5 Studying the Effect of Synthesis Variables on the Metal Nanoparticles .......... 50<br/>2.3.6 Synthesis of Au-Ag Bimetallic Nanoparticles Using Different Au:Ag Molar<br/>Ratios 50<br/>2.4 Characterization ....................................................................................................... 50<br/>2.5 Results and Discussion ............................................................................................. 51<br/>2.5.1 UV-vis Spectral Analysis .................................................................................. 52<br/>2.5.2 Stability Study ................................................................................................... 53<br/>2.5.3 Effect of Synthesis Variables on the Metal Nanoparticles ............................... 54<br/>2.5.4 Effect of Variation of Au:Ag Molar Ratio on the Au-Ag Bimetallic<br/>Nanoparticles .................................................................................................................. 62<br/>2.5.5 TEM Analysis ................................................................................................... 63<br/>2.5.6 EDX Analysis ................................................................................................... 73<br/>2.5.7 XRD Analysis ................................................................................................... 74<br/>2.5.8 FTIR Analysis ................................................................................................... 78<br/>2.5.9 Zeta Potential Analysis ..................................................................................... 81<br/>3 KRAS MUTATION DETECTION USING MORPHOLINO-GOLD NANOPARTICLE<br/>PROBES ........................................................................................................................... 82<br/>viii<br/>3.1 Aim of Work ............................................................................................................ 82<br/>3.2 Introduction .............................................................................................................. 82<br/>3.2.1 Epidermal Growth Factor Receptor (EGFR) .................................................... 83<br/>3.2.2 KRAS Gene Mutations as Biomarker for Response to Anti-EGFR Therapy ... 89<br/>3.2.3 KRAS Mutation Detection Methods ................................................................. 94<br/>3.2.4 DNA and Mismatch Detection Using MOR-Au NP Probes ........................... 101<br/>3.3 Materials and Methods ........................................................................................... 102<br/>3.3.1 Preparation of MOR-Au Nanoparticle Probes ................................................ 102<br/>3.3.2 Screening of MOR Sequences ........................................................................ 103<br/>3.3.3 A549 Cell Culture and Genomic DNA Extraction ......................................... 106<br/>3.3.4 Target Amplification and Detection Using MOR-Au NP Probes .................. 106<br/>3.3.5 Calculating the Selectivity of the MOR-Au NP Probes.................................. 110<br/>3.4 Results and Discussion ........................................................................................... 110<br/>3.4.1 MOR-Au Nanoparticle Probes ........................................................................ 110<br/>3.4.2 Screening of MOR Sequences ........................................................................ 113<br/>3.4.3 Using A549 Cancer Cell Line as a Model for Tumour Cells Harbouring KRAS<br/>G12S Mutation .............................................................................................................. 120<br/>4 CONCLUSION ....................................................................................................... 128<br/>REFERENCES ............................................................................................................... 129 |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>A green method was developed for the synthesis of metal nanoparticles. In addition, Au<br/>nanoparticles were used for the detection of KRAS gene mutations.<br/>Au, Ag and Au-Ag bimetallic nanoparticles were phytosynthesized using the aqueous extract<br/>of sago pondweed (Potamogeton pectinatus L.). The nanoparticles were fully characterized.<br/>The effect of the synthesis variables on the nanoparticles was investigated using UV-vis<br/>spectral analysis. Results showed that they were mostly spherical in shape, although other<br/>shapes as nanotriangles and hexagons were observed as well. Alloy-type Au-Ag<br/>nanoparticles could be specifically synthesized at pH 12. The nanoparticles were stable over<br/>3 weeks. FTIR spectroscopy results indicate that the flavones and proteins present in the<br/>plant extract are responsible for the synthesis and stabilization of the nanoparticles. On the<br/>other hand, gold nanoparticles were used for the detection of KRAS mutations to predict the<br/>response to anti-EGFR antibody therapy in patients with metastatic colorectal carcinoma.<br/>Gold nanoparticles were labeled with morpholino (MOR) oligos and used as probes for the<br/>detection of mutations in the KRAS gene. Different MOR sequences were screened for the<br/>detection of G12S, G12V and G13D KRAS mutations using synthetic DNA. A549 cell line<br/>was used as a model for G12S KRAS mutation-harboring tumor cells. A549 genomic DNA<br/>was extracted and amplified. Results showed that the behavior of the MOR-Au NP probes<br/>vary according to length and sequence of the MOR oligos. The optimum MOR sequences for<br/>the detection of G12S, G12V and G13D KRAS mutations were selected. G12S KRAS<br/>mutation could be detected using our probe with a selectivity of 5% in wild-type genomic<br/>DNA. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English and Arabic |
| 650 #4 - Subject |
| Subject |
Nano- Science & Technology |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
Nano- Science & Technology |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
199 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
199 |