Noble Metal Nanoparticles : (Record no. 9188)

MARC details
000 -LEADER
fixed length control field 09954nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 211216b2012 |||a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 620
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ayman Amin Abdel Hamid
245 1# - TITLE STATEMENT
Title Noble Metal Nanoparticles :
Remainder of title Green Synthesis and Application in KRAS Mutation Detection /
Statement of responsibility, etc. Ayman Amin Abdel Hamid
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2012
300 ## - PHYSICAL DESCRIPTION
Extent 175 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed Abdel-Mottaleb
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2012 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>ACKNOWLEDGEMENTS ................................................................................................ v<br/>LIST OF FIGURES ........................................................................................................... ix<br/>LIST OF TABLES ............................................................................................................ xv<br/>LIST OF EQUATIONS ................................................................................................... xvi<br/>LIST OF ACRONYMS .................................................................................................. xvii<br/>ABSTRACT ........................................................................................................................ 1<br/>THESIS OBJECTIVES ...................................................................................................... 3<br/>THESIS OUTLINE ............................................................................................................. 5<br/>1 INTRODUCTION ...................................................................................................... 7<br/>1.1 History of Nanoscience and Technology ................................................................... 7<br/>1.2 Fabrication of Nanomaterials ..................................................................................... 8<br/>1.3 Characterization of Nanomaterials ............................................................................. 8<br/>1.4 Applications of Nanomaterials ................................................................................... 9<br/>1.5 Green Synthesis of Metal Nanoparticles .................................................................. 10<br/>1.5.1 Biosynthesis of Metal Nanoparticles Using Microorganisms .......................... 11<br/>1.5.2 Biosynthesis of Metal Nanoparticles Using Whole Plants ............................... 13<br/>1.5.3 Biosynthesis of Metal Nanoparticles Using Plant Extracts and Derivatives .... 15<br/>1.6 Applications of Noble Metal Nanoparticles ............................................................. 26<br/>1.6.1 Photothermal Applications................................................................................ 28<br/>1.6.2 Drug Delivery ................................................................................................... 28<br/>vii<br/>1.6.3 Biosensing ......................................................................................................... 29<br/>2 PHYTOSYNTHESIS OF Au, Ag AND Au-Ag BIMETALLIC NANOPARTICLES<br/>USING AQUEOUS EXTRACT OF SAGO PONDWEED (POTAMOGETON PECTINATUS<br/>L.) 46<br/>2.1 Aim of Work ............................................................................................................ 46<br/>2.2 Introduction .............................................................................................................. 46<br/>2.3 Materials and Methods ............................................................................................. 49<br/>2.3.1 Materials ........................................................................................................... 49<br/>2.3.2 Preparation of Aqueous Extract of Potamogeton Pectinatus L. ....................... 49<br/>2.3.3 Synthesis of Metal Nanoparticles ..................................................................... 49<br/>2.3.4 Stability Study ................................................................................................... 50<br/>2.3.5 Studying the Effect of Synthesis Variables on the Metal Nanoparticles .......... 50<br/>2.3.6 Synthesis of Au-Ag Bimetallic Nanoparticles Using Different Au:Ag Molar<br/>Ratios 50<br/>2.4 Characterization ....................................................................................................... 50<br/>2.5 Results and Discussion ............................................................................................. 51<br/>2.5.1 UV-vis Spectral Analysis .................................................................................. 52<br/>2.5.2 Stability Study ................................................................................................... 53<br/>2.5.3 Effect of Synthesis Variables on the Metal Nanoparticles ............................... 54<br/>2.5.4 Effect of Variation of Au:Ag Molar Ratio on the Au-Ag Bimetallic<br/>Nanoparticles .................................................................................................................. 62<br/>2.5.5 TEM Analysis ................................................................................................... 63<br/>2.5.6 EDX Analysis ................................................................................................... 73<br/>2.5.7 XRD Analysis ................................................................................................... 74<br/>2.5.8 FTIR Analysis ................................................................................................... 78<br/>2.5.9 Zeta Potential Analysis ..................................................................................... 81<br/>3 KRAS MUTATION DETECTION USING MORPHOLINO-GOLD NANOPARTICLE<br/>PROBES ........................................................................................................................... 82<br/>viii<br/>3.1 Aim of Work ............................................................................................................ 82<br/>3.2 Introduction .............................................................................................................. 82<br/>3.2.1 Epidermal Growth Factor Receptor (EGFR) .................................................... 83<br/>3.2.2 KRAS Gene Mutations as Biomarker for Response to Anti-EGFR Therapy ... 89<br/>3.2.3 KRAS Mutation Detection Methods ................................................................. 94<br/>3.2.4 DNA and Mismatch Detection Using MOR-Au NP Probes ........................... 101<br/>3.3 Materials and Methods ........................................................................................... 102<br/>3.3.1 Preparation of MOR-Au Nanoparticle Probes ................................................ 102<br/>3.3.2 Screening of MOR Sequences ........................................................................ 103<br/>3.3.3 A549 Cell Culture and Genomic DNA Extraction ......................................... 106<br/>3.3.4 Target Amplification and Detection Using MOR-Au NP Probes .................. 106<br/>3.3.5 Calculating the Selectivity of the MOR-Au NP Probes.................................. 110<br/>3.4 Results and Discussion ........................................................................................... 110<br/>3.4.1 MOR-Au Nanoparticle Probes ........................................................................ 110<br/>3.4.2 Screening of MOR Sequences ........................................................................ 113<br/>3.4.3 Using A549 Cancer Cell Line as a Model for Tumour Cells Harbouring KRAS<br/>G12S Mutation .............................................................................................................. 120<br/>4 CONCLUSION ....................................................................................................... 128<br/>REFERENCES ............................................................................................................... 129
520 3# - Abstract
Abstract Abstract:<br/>A green method was developed for the synthesis of metal nanoparticles. In addition, Au<br/>nanoparticles were used for the detection of KRAS gene mutations.<br/>Au, Ag and Au-Ag bimetallic nanoparticles were phytosynthesized using the aqueous extract<br/>of sago pondweed (Potamogeton pectinatus L.). The nanoparticles were fully characterized.<br/>The effect of the synthesis variables on the nanoparticles was investigated using UV-vis<br/>spectral analysis. Results showed that they were mostly spherical in shape, although other<br/>shapes as nanotriangles and hexagons were observed as well. Alloy-type Au-Ag<br/>nanoparticles could be specifically synthesized at pH 12. The nanoparticles were stable over<br/>3 weeks. FTIR spectroscopy results indicate that the flavones and proteins present in the<br/>plant extract are responsible for the synthesis and stabilization of the nanoparticles. On the<br/>other hand, gold nanoparticles were used for the detection of KRAS mutations to predict the<br/>response to anti-EGFR antibody therapy in patients with metastatic colorectal carcinoma.<br/>Gold nanoparticles were labeled with morpholino (MOR) oligos and used as probes for the<br/>detection of mutations in the KRAS gene. Different MOR sequences were screened for the<br/>detection of G12S, G12V and G13D KRAS mutations using synthetic DNA. A549 cell line<br/>was used as a model for G12S KRAS mutation-harboring tumor cells. A549 genomic DNA<br/>was extracted and amplified. Results showed that the behavior of the MOR-Au NP probes<br/>vary according to length and sequence of the MOR oligos. The optimum MOR sequences for<br/>the detection of G12S, G12V and G13D KRAS mutations were selected. G12S KRAS<br/>mutation could be detected using our probe with a selectivity of 5% in wild-type genomic<br/>DNA.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Nano- Science & Technology
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Nano- Science & Technology
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 199
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 199
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 12/16/2021   620/A.H.N/2012 12/16/2021 12/16/2021 Thesis