IMPROVING HEPATIC TUMORS CLASSIFICATION IN MULTIPHASE COMPUTED TOMOGRAPHY USING COMBINED REGIONAL AND SPATIO-TEMPORAL CLASSIFICATION APPROACHES / (Record no. 9079)

MARC details
000 -LEADER
fixed length control field 04215nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210831s2021 |||||||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Shaimaa Ali Shaheen Omer
245 1# - TITLE STATEMENT
Title IMPROVING HEPATIC TUMORS CLASSIFICATION IN MULTIPHASE COMPUTED TOMOGRAPHY USING COMBINED REGIONAL AND SPATIO-TEMPORAL CLASSIFICATION APPROACHES /
Statement of responsibility, etc. Shaimaa Ali Shaheen Omer
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2021
300 ## - PHYSICAL DESCRIPTION
Extent 102 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
General note Supervisor: Sahar A. Fawzi
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2021 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>List of Tables .............................................................................................................. vi<br/>List of Figures ............................................................................................................ vii<br/>List of Equations ....................................................................................................... xiii<br/>Abstract ..................................................................................................................... xiv<br/>Introduction ................................................................................................................... 1<br/>Methodology ............................................................................................................... 28<br/>Preprocessing ...................................................................................................29<br/>The Model ........................................................................................................36<br/>Feature Extraction........................................................................................................39<br/>Spatial Approach ..............................................................................................39<br/>Spatio-Temporal Approach ..............................................................................46<br/>Regional Information .......................................................................................53<br/>Results ......................................................................................................................... 61<br/>Discussion and Future Work ....................................................................................... 86<br/>References ...........................
520 3# - Abstract
Abstract Abstract:<br/>Liver cancer is the most frequently diagnosed cancer in Egypt and North Africa. Early diagnosis provides a better chance for a curative treatment.<br/>Dynamic contrast-enhanced computed tomography (DCE-CT) is the most commonly used technique to differentiate liver tissues. Since, it is available everywhere, accommodates less cost, and takes short scanning time.<br/>In this thesis, DCE-CT images are used to investigate the impact of regional-bases extraction of the spatio-temporal features on the liver lesions classification performance. Texture, density, and temporal feature set, and their combination along spatially partitioned ROI are investigated to characterize five hepatic pathologies from DCE-CT images. Decision tree ensembles (random forest) are employed in both feature selection and classification with ten folds cross-validation to classify a total of 180 ROI. Dataset includes normal tissues, cyst, hemangioma, metastatic and hepatocellular carcinoma (36 ROI for each liver pathology).<br/>The results suggest that normal liver tissues could easily be recognized from just the density features (accuracy = 99%), whereas texture features have the best performance in classifying HCC (accuracy = 96%). Combining all feature sets could overcome individual performance variations among them and attain consistent better results for all tumor types.<br/>Moreover, regional information improves the classification performance in all the classes' results. An overall accuracy of 96% is achieved for the five liver lesions classification.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/31/2021   610 / S.A.I / 2021 08/31/2021 08/31/2021 Thesis