MARC details
| 000 -LEADER |
| fixed length control field |
06255nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
210830s2021 ||||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
005 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Abdulmoneam Ali Hassan Ali |
| 245 1# - TITLE STATEMENT |
| Title |
A Stochastic Geometric Approach Towards the Temporal Interference Correlation Analysis of D2D Cache Enabled Networks / |
| Statement of responsibility, etc. |
Abdulmoneam Ali Hassan Ali |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2021 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
64 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| General note |
Supervisor: Amr El-Sherif |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2021 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv<br/>Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Interference Management Challenges and Related Work . . . . . . 3<br/>1.2.1 Spectrum Sharing . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2.2 Channel Access . . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>1.2.3 Temporal Interference Correlation . . . . . . . . . . . . . . 6<br/>1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2. Impact of Temporally Correlated Nakagami- m Interferers in D2D Cache-<br/>Aided Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.1.2 Content-based Association Policy . . . . . . . . . . . . . . 11<br/>2.1.3 Successful Transmission Event . . . . . . . . . . . . . . . . 12<br/>2.2 Probability of Successful Content Delivery . . . . . . . . . . . . . . 14<br/>2.2.1 Successful Transmission at the lth time slot . . . . . . . . . 16<br/>2.2.2 Joint Successful Transmission Probability . . . . . . . . . . 18<br/>2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br/>ix<br/>3. Impact of Content-Aware Scheduling on Successful Content Delivery . . . 26<br/>3.1 Content-Dependent Aggregate Interference . . . . . . . . . . . . . . 26<br/>3.2 Successful Transmission Analysis . . . . . . . . . . . . . . . . . . . 27<br/>3.2.1 Probability of Successful Transmission in slot l . . . . . . . 28<br/>3.2.2 Joint Successful Transmission Probability . . . . . . . . . . 31<br/>3.3 Results and discussion of the impact of content-dependent scheduling<br/>(CDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>3.3.1 Simulations setup . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>3.4 Fairness-based CDS (F-CDS) . . . . . . . . . . . . . . . . . . . . . 38<br/>3.4.1 Fairness Results . . . . . . . . . . . . . . . . . . . . . . . . 39<br/>3.5 Meta Distribution of SIR for a Cache Enabled D2D Cellular Network 43<br/>3.5.1 Moments for a typical D2D Receiver Requesting arbitrary kth<br/>file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.6 Meta Distribution For The Whole Network . . . . . . . . . . . . . 49<br/>3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>4. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>Bibliography . . . . . . . . . . . . . |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>both academia and industry over the past few years. Exploiting the potential of direct<br/>device-to-device (D2D) communication has been of particular interest to relieve<br/>the burden on the cellular network and maximize the content delivery. In addition,<br/>deploying cache storage at the mobile devices plays a crucial role in enhancing the<br/>spectrum efficiency of the network. Nevertheless, massive and uncoordinated deployments<br/>of mobile devices induce significant interference that might substantially hinder<br/>the envisioned results. One aspect to overcome this sever interference is through retransmission<br/>upon decoding failures. In this thesis, we investigate the impact of<br/>temporal interference correlation in D2D cache-enabled cellular network. We focus<br/>on the effect of transmission activity on the performance of the network. To this<br/>end, tools from stochastic geometry theory is used to capture topological randomness<br/>together with the numerous stochastic constituents in such large scale network. We<br/>have characterized the temporally correlated interference introduced by the retransmissions<br/>and static nature of the cache-enabled devices under generalized Nakagami-m<br/>fading channels. In addition, the effect of the different network parameters are investigated.<br/>To take further more steps in order to improve network performance, we<br/>exploit the cached content information in scheduling D2D links instead of choosing<br/>the number of the D2D links blindly. We also characterize the average probability<br/>iv<br/>of successful content delivery under content dependent access probabilities. With<br/>this proposed scheduling scheme, the network performance outperforms in terms of<br/>the whole network performance. This achieved gain comes at the cost of performance<br/>degradation for the users with less files’ popularity. Hence, we consider enhancing the<br/>QoS for all the D2D users without sacrificing the gain attained by exploiting content<br/>information.Towards this objective, we formulate a constrained optimization problem<br/>for maximizing the overall network performance while guaranteeing the minimum<br/>average reliability at each user individually. Finally, for more understanding the network<br/>, we derive the distribution of signal to interference ratio under full interference<br/>correlation. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English . |
| 650 #4 - Subject |
| Subject |
Wireless Technologies |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
Wireless Technologies |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
327 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
327 |