Confidence aware incremental learning approach for named entity linking / (Record no. 9074)

MARC details
000 -LEADER
fixed length control field 11326nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210830s2016 ||||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Talaat Maher Talaat Mohamed Khalil
245 1# - TITLE STATEMENT
Title Confidence aware incremental learning approach for named entity linking /
Statement of responsibility, etc. Talaat Maher Talaat Mohamed Khalil
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2016
300 ## - PHYSICAL DESCRIPTION
Extent 73 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
General note Supervisor: Samhaa El-Beltagy
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2016 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>1 INTRODUCTION ........................................................................................................ 1<br/>1.1 TASK DESCRIPTION .................................................................................................. 2<br/>1.2 NEL APPLICATIONS ................................................................................................. 4<br/>1.3 NEL RESOURCES ..................................................................................................... 5<br/>1.3.1 Knowledge Bases ............................................................................................. 5<br/>1.3.2 Datasets ............................................................................................................ 7<br/>1.4 CHALLENGES AND CONTRIBUTIONS ......................................................................... 8<br/>1.5 OUTLINE OF THE THESIS ......................................................................................... 10<br/>2 STATE OF THE ART ............................................................................................... 11<br/>2.1 EARLY NAMED ENTITY LINKING SYSTEMS ............................................................ 12<br/>2.1.1 Non-Global disambiguation approaches ....................................................... 12<br/>2.1.2 Global disambiguation approaches ............................................................... 12<br/>2.2 STATE OF THE ART SYSTEMS .................................................................................. 13<br/>2.2.1 Graphical model approaches ......................................................................... 13<br/>2.2.1.1 Graph greedy optimization ............................................................................................................... 13<br/>2.2.1.2 PageRank ......................................................................................................................................... 13<br/>2.2.1.3 Markov models ................................................................................................................................ 14<br/>2.2.2 Ranking approaches ....................................................................................... 15<br/>2.2.2.1 Heuristics approaches ....................................................................................................................... 15<br/>2.2.2.2 Machine learning approaches ........................................................................................................... 16<br/>2.2.2.2.1 SVM-based ............................................................................................................................... 16<br/>2.2.2.2.2 Neural Networks ....................................................................................................................... 16<br/>2.2.2.2.3 Ensemble trees ......................................................................................................................... 18<br/>2.3 SUMMARY .............................................................................................................. 19<br/>3 NAMED ENTITY LINKING: THE PROPOSED MODEL .................................. 20<br/>3.1 CANDIDATE GENERATION ...................................................................................... 21<br/>3.2 CANDIDATE DISAMBIGUATION ............................................................................... 22<br/>3.2.1 NEL Features ................................................................................................. 23<br/>3.2.1.1 Popularity Features ........................................................................................................................... 23<br/>3.2.1.2 String Similarity Features .................................................................................................................. 24<br/>3.2.1.3 Entity Class Feature .......................................................................................................................... 25<br/>3.2.1.4 Context Similarity Features ............................................................................................................... 25<br/>v<br/>Word Template by Friedman & Morgan 2014<br/>3.2.1.4.1 Building the Context Modelling Resources ...............................................................................28<br/>3.2.1.4.1.1 Data Preparation and Pre-processing ...............................................................................28<br/>3.2.1.4.1.2 Word and Entity Vectors Training ....................................................................................30<br/>3.2.2 Learning to Rank ............................................................................................ 35<br/>3.2.2.1 Gradient Boosted Regression Trees Classifier (GBRT) .......................................................................35<br/>3.2.2.2 Training Setup ..................................................................................................................................37<br/>3.2.2.2.1 Data Preparation and Training ..................................................................................................37<br/>3.2.2.2.2 System Parameters Tuning .......................................................................................................38<br/>3.2.2.3 Two Step Testing ...............................................................................................................................38<br/>4 EXPERIMENTAL RESULTS AND ANALYSIS ................................................... 40<br/>4.1 DATASETS AND METRICS ....................................................................................... 40<br/>4.1.1 Datasets .......................................................................................................... 40<br/>4.1.2 NEL Evaluation Metrics ................................................................................. 41<br/>4.2 NEL SYSTEM RESULTS .......................................................................................... 41<br/>4.2.1 Basic Configuration Results ........................................................................... 42<br/>4.2.2 Skip-Gram Parameters Effect ........................................................................ 44<br/>4.2.2.1 Wider Context ..................................................................................................................................45<br/>4.2.2.2 Higher Vector Dimensionality ...........................................................................................................45<br/>4.2.3 Average Classifier Results ............................................................................. 47<br/>4.2.4 State Of The Art Comparison ......................................................................... 48<br/>4.3 INCREMENTAL LEARNING ....................................................................................... 49<br/>4.3.1 Incremental learning setup ............................................................................ 49<br/>4.3.1.1 Incremental token vectors learning ..................................................................................................49<br/>4.3.1.2 NEL ranker training and testing setup ...............................................................................................50<br/>4.3.2 Incremental learning results .......................................................................... 52<br/>5 CONFIDENCE SCORING ....................................................................................... 54<br/>5.1 CONFIDENCE SCORER ............................................................................................. 54<br/>5.2 CONFIDENCE OUTPUT ANALYSIS ........................................................................... 56<br/>6 CONCLUSION AND FUTURE WORK ................................................................. 59<br/>7 REFERENCES ........................................................................................................... 61<br/>8 APPENDICES ............................................................................................................ 67<br/>APPENDIX 1 ADDITIONAL EXPERIMENTAL RESULTS ................................. 68<br/>APPENDIX 2 HIERARCHICAL SOFTMAX ...........................................................
520 3# - Abstract
Abstract Abstract:<br/>Named Entity Linking is the task of disambiguating entities in natural language text by linking them to their relevant entries in a knowledge base. The state of the art systems lack two main features that could be important in an industrial setting. First, they do not provide a confidence value associated with the output links. Second, the ability of these systems to cope with the daily incremental increase of entities has not been tested yet. The main contribution of the presented work, is that it proposes a system that tackles both problems while providing performance that is comparable to state of the art.<br/>Following the recent state of the art methods, we developed a ranking approach for the Named Entity Linking task. In addition to using entity popularity, string similarity, and Named Entity Recognition based features, we incorporated additional features to capture the similarity between the candidate entities and the input text. These features were derived from entity and word tokens which in turn were trained using the “Skip-Gram” model on the English Wikipedia. Our results show a comparable performance to the state of the art methods by achieving micro and macro linking accuracies of 89.5%, 90.3% respectively on the “AIDA” test set. Furthermore our incremental learning approach showed its effectiveness by achieving 84.8% and 84% micro and macro accuracies respectively using only less than 15% of the training data for training. The results also revealed the critical importance of the token vectors derived features in such an incremental learning scenarios.<br/>Our experimental results showed the ability of the system to provide comparable results to the full system using only language independent tools and resources, making the system portable to any language available in Wikipedia.<br/>Moreover, a confidence scoring approach was applied by employing a logistic classifier to give confidence value for the first ranked entity given the ranking scores of a predetermined number of the best ranked candidate entities. We show that the scorer was successfully able to capture the confidence values through the analysis of its precision, recall, and F-Score curves on a test set.
546 ## - Language Note
Language Note Text in English, abstracts in English .
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/30/2021   610/ T.K.C 2016 08/30/2021 08/30/2021 Thesis