Learning Meters of Arabic Poems with Deep Learning / (Record no. 9072)

MARC details
000 -LEADER
fixed length control field 09307nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210830s2019 ||||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Moustafa Alaa Mohamed
245 1# - TITLE STATEMENT
Title Learning Meters of Arabic Poems with Deep Learning /
Statement of responsibility, etc. Moustafa Alaa Mohamed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2019
300 ## - PHYSICAL DESCRIPTION
Extent 56 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
General note Supervisor: Samhaa El-Beltagy
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2019 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Dedication i<br/>Acknowledgment i<br/>Table of Contents ii<br/>List of Figures iv<br/>List of Tables v<br/>Thesis Outline 1<br/>Abstract 1<br/>1 INTRODUCTION 3<br/>1.1 Arabic Poetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2 BACKGROUND 5<br/>2.1 Arabic Arud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.1.1 Al-Farahidi and Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.1.2 Feet Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1.3 Arabic Poetry feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.1.4 Arabic Poetry Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.1.5 Meters Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>2.2 Deep Learning Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br/>2.2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>2.2.2 The Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.2.3 The Neural Network Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.2.4 Neural Network Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.2.5 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>2.2.6 Long Short Term Memory networks (LSTMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>2.2.7 Machine Learning Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>2.3.1 Deterministic (Algorithmic) Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>ii<br/>3 DESIGN DATASET AND EXPERIMENTS 36<br/>3.1 Dataset Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br/>3.1.1 Data Scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br/>3.1.2 Data Preparation and Cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>3.1.3 Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>3.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>3.2.1 Parameters of Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>3.2.2 Parameters of Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>3.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>3.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>3.3.3 Implementation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.4.1 Overall Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.4.2 Data Representation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.4.3 Network Configurations Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.4.4 Per-Class (Meter) Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.4.5 Encoding Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.4.6 Comparison with Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>3.4.7 Classifying Arabic Non-Poem Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.5.1 Dataset Unbalanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.5.2 Encoding Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.5.3 Weighting Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.5.4 Neural Network configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.5.5 Model Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>4 Conclusion and Future Work 53<br/>4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>4.2 Future Work . . . . . . . . . . . . . . . . . . . .
520 3# - Abstract
Abstract Abstract:<br/>People can easily determine whether a piece of writing is a poem or prose, but only specialists can determine the class of poem.<br/>In this thesis, we built a model that can classify poetry according to its meters; a forward step towards machine understanding<br/>of the Arabic language.<br/>A number of different deep learning models are proposed for poem meter classification. As poetry is sequence data, then recurrent<br/>neural networks are suitable for the task. We have trained three variants of them; LSTM, GRU with different architectures<br/>and hyper-parameters. Because meters are a sequence of characters, we have encoded the input text at the character-level, so that<br/>we preserve the information provided by the letters succession directly fed to the models. Moreover, we introduce a comparative<br/>study on the difference between binary and One-hot encoding regarding their effect on the learning curve. We also introduce a new<br/>encoding technique called Two-Hot, which merges the advantages of both Binary and One-Hot techniques.<br/>Artificial Intelligence currently works to do the human tasks such as our problem here. Our target in this thesis is to achieve the<br/>human accuracy which will make it easy for anyone to recognise the meter for any poem without referring to the language experts<br/>or to study the whole field.<br/>In this thesis, we will explain how to use deep learning to classify the Arabic poem. We will also explain in details the feature of<br/>Arabic poem and how to deal with this feature. We explain how anyone can work with Arabic text encoding in a dynamic way to<br/>encode the text at the character level and deal with Arabic text features such as the Tashkeel.<br/>To the best of the author’s knowledge, this research is the first to address classifying poem meters in a machine learning approach,<br/>in general, and in RNN featureless based approach, in particular. In addition, the dataset is the first publicly available<br/>dataset prepared for the purpose of future computational research.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/30/2021   610/ M.A.L/ 2019 08/30/2021 08/30/2021 Thesis