MARC details
| 000 -LEADER |
| fixed length control field |
13166nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
210830s2018 ||||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
620 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Amal Abdullah Mahmoud Ibrahim Elhussieny |
| 245 1# - TITLE STATEMENT |
| Title |
Fabrication Of Innovative Biopolymer Nanocomposites Thin Films For Degradable Food Bags / |
| Statement of responsibility, etc. |
Amal Abdullah Mahmoud Ibrahim Elhussieny |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2018 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
104 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| Materials specified |
Supervisor: |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2018 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>Dedication………………………………………………………………………….. iv<br/>Acknowledgments……………………………………………………………………v<br/>Table of Content……………………………………………………………………..vi<br/>Nomenclature………………………………………………………………………..vii<br/>List of Tables …………………………………………………………………..…..viii<br/>List of Figures ………………………………………………………………………ix<br/>Abstract ……………………………………………………………….……………xvi<br/>Chapter (1) Introduction………..…………………………………………………1-6<br/>1.1.Background ………………………………………………………….……… 2<br/>1.2.Natural bio-polymer………………………………..……………….…………5<br/>1.3.Scope of objective ………………………….…………………………………5<br/>Chapter (2) Literature review…………...…………………………………………7-22<br/>2.1. Natural polymers……………………………………………………….8<br/>2.2. Composites………………………………………………………………… 9<br/>2.3. Chitin and chitosan ……………………………………………….10<br/>2.4. Cellulose…………………………………………………………..12<br/>2.4.1. Rice straw ………………………………………………………13<br/>2.5. Extraction methods of pure chitosan…………………………………….14<br/>2.6. Preparation methods of chitosan composites…………………….16<br/>2.6.1. Chitin fiber and chitin whisker as reinforced materials…………17<br/>2.6.2. Cellulosic fibers and cellulosic nanofibers extracted from rice straw<br/>waste as reinforced materials..................................................…...19<br/>2.6.3. Chitosan /cellulose composites………………………………………...20<br/>2.7. Summary…………………………………………………………………….22<br/>Chapter (3) Material and methods……..…………………………………………23-43<br/>vii<br/>3.1. Materials…………………………………………….………..…………………24<br/>3.2.1. Method of preparation…………………….………………...………………25<br/>3.2.1.1 Simple collection and preparation…………………………………………27<br/>3.2.1.2. Deproteinization (DP) of shrimp shell waste…………………..………….28<br/>3.2.1.3. Demineralization (DM) of shrimp shell waste…………………………….29<br/>3.2.1.4. Deacetylation (DD) of shrimp shell waste………….…….…………….…30<br/>3.2.1.5. Preparation of chitosan thin films…………………...…………………….31<br/>3.2.2. Extraction of chitosan (CS) from shrimp shells waste with different degrees of<br/>deacetylation…………………………………………………………………………32<br/>3.2.2.1. Preparation of chitosan (CS) thin film……………………….…………...32<br/>3.2.3. Nano-chitosan(NCS) synthesis and optimization…………….…………..…33<br/>3.2.3.1. Preparation of nano chitosan (NCS) thin films………………………..34<br/>3.2.4. Extraction of chitin whisker (WH)……………………………………….....34<br/>3.2.5. Extraction of Rice straw fibre (RS) and nano fibres (NRS) from Rice Straw<br/>waste…………………………………………………………………………………35<br/>3.2.6. Preparation of nano rice straw fibers (NRS)…………………….…………..35<br/>3.2.6. Preparation of CS composites thin films…………………………….……...36<br/>3.2.7. Preparation of NCS composites thin films…………………………….…….36<br/>3.3. Characterization of powders and fabricated thin films……………………….....37<br/>3.3.1. Nuclear magnetic resonance (1HNMR) for chitosan powder……………….37<br/>3.3.2. Fourier transformation Infrared (FT-IR) for powder and thin films………..37<br/>3.3.3. X-ray diffraction (XRD) for powders and thin films……………….……….38<br/>3.3.4. The particle size analysis for powders…………………………..…...………38<br/>3.3.5. Mechanical Test for thin films……………………………..………..….……38<br/>3.3.6. Nanoindentation for nano thin films………………………….....……..…....41<br/>3.3.7. Cryogenic scanning electron microscopy (SEM) for thin films……….…….42<br/>3.3.8. Thermal gravimetric analysis (TGA) for powders and thin films……...…….42<br/>3.3.9. In-soil degradation test for thin films………………………...……………….42<br/>3.3.10. Swelling and solubility test for thin films…………………..……………....43<br/>3.3.11. Statistical analysis for thin films………………..…………………………..43<br/>Chapter (4) Results and discussion……..………………………………………44-43<br/>4. Results and discussion for extracted chitosan powder with mechanical and<br/>chemical methods……………………………………………………………………46<br/>4.1.1HNMR of grounded and non-grounded chitosan<br/>powders…………………..46<br/>4.2. Fourier transformation Infrared (FT-IR) Spectra of grounded and nongrounded<br/>chitosan powder…………………………………………………………………...…47<br/>4.3.1HNMR of extracted non- grounded chitosan powder with three different degree<br/>of deacetylation………………………………………………………………………50<br/>viii<br/>5. Results and discussion for chitosan and nanochitosan composites with rice straw<br/>and nano-rice straw fibers…………………………………………………………...51<br/>5.1. Fourier transformation Infrared (FT-IR) Spectra of chitosan, nanochitosan with<br/>rice straw and nanorice straw thin films ……………………………………………52<br/>5.2. X-ray diffraction of rice straw and nanorice straw composites thin film…….54<br/>5.3. Particle size analysis of nanochitosan and nanorice straw powders………….56<br/>5.4. Mechanical properties of chitosan thin film composites………………………..57<br/>5.5. Nano indentation for nano chitosan nanorice straw composites thin films……..59<br/>5.6. Scanning electron microscopy (SEM) of rice straw and nanorice straw<br/>composites thin films………………………………………………………………...61<br/>5.7. Thermogravimetric analysis (TGA) of chitosan and nanochitosan composites..63<br/>5.8. In-soil Degradation test of chitosan and nano chitosan composites…………….65<br/>5.9. Swelling and solubility tests of chitosan composites thin films……………..…67<br/>5.10. Statistical analysis of chitosan and nano chitosan composites thin films……..69<br/>6. Results and discussion for chitosan and nanochitosan composites reinforced with<br/>chitin fibers and chitin whisker………………………………………………………73<br/>6.1. Fourier transformation Infrared (FT-IR) Spectra for chitin powder…………….75<br/>6.2. Fourier transformation Infrared (FT-IR) Spectra of chitosan, nanochitosan with<br/>chitin fibers and chitin whisker thin films…………………………………………...75<br/>6.3. X ray diffraction (XRD) of powders and composites thin films……………...78<br/>6.4. Particle size of chitin whisker………………………………………………….80<br/>6.5. Mechanical test of chitosan composites thin films………………………….…80<br/>6.6. Nano indentation for nano chitosan composites reinforced with chitin fibers and<br/>chitin whisker thin films…………………………………………………………...82<br/>6.7. Crayon Scanning Electron Microscope (C-SEM) of chitosan composites films<br/>reinforced with chitin and chitin whisker…………………………………………..84<br/>6.8. Thermogravimetric analysis (TGA) of chitosan composites reinforced with chitin<br/>fibers and chitin whisker thin<br/>films……………………………………………………………………….…………85<br/>6.9. In- Soil Degradation test of chitosan and nano chitosan composites reinforced<br/>with chitin fibers and chitin whisker thin films……………………………………...88<br/>6.10. Swelling and solubility tests of chitosan composites reinforced with chitin fibers<br/>and chitin whisker thin films…………………………………………………………90<br/>6.11. Statistical analysis of chitosan and nano chitosan composites reinforced with<br/>chitin fibers and chitin whisker thin films…………………………………………...91<br/>7. Conclusion……………………………………………………………….……….97<br/>8. Reference …… |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>The currently used carrier bags are synthesized from polyethylene, which is based on<br/>a petroleum-based material (non-renewable source); need a several hundred years to<br/>decompose. Estimates of the number of plastic bags used annually worldwide vary in<br/>the range of 100 million to a trillion according to a New York Times article and only<br/>a small portion of these bags is recycled, and plenty are left to enter the waste stream.<br/>Because the production of such a huge number of bags is associated with a long time<br/>to decompose, the plastic bags that are thrown away create several ecological<br/>problems. Carrier bags based on natural materials such as natural bio-polymers<br/>composites do not pose environmental hazards. Moreover, there are continuous<br/>efforts to spread the use of bio-composite materials for various manufacturing<br/>purposes such as carrier bags production due to their biodegradability, low carbon<br/>emissions, low cost, and being from non-petroleum-based sources.<br/>The aim of this research is to investigate the physical, mechanical, chemical, and<br/>thermal properties of the nanocomposite films from natural polymers and determine<br/>their potential use as carrier bags. The potential use of chitosan films as a replacement<br/>to synthetic polymers in packaging industry applications is receiving huge attention<br/>by both the academic and industrial sectors due to its biodegradability and<br/>antimicrobial properties. In this study, the effect of different reaction times during the<br/>chemical transformation of chitosan to a natural polymer was explored. Furthermore,<br/>the current work focuses on the preparation of chitosan and nano-chitosan with<br/>various methods since the particle size of chitosan has a significant influence on the<br/>previously mentioned properties. In addition, reinforcement of the chitosan with<br/>natural fillers was studied. The purpose of using the fillers was to overcome the<br/>limitations in the physical and mechanical properties of chitosan and nano-chitosan.<br/>The addition of several fillers such as cellulose fibres, nano-cellulose fibres extracted<br/>from rice straw waste, chitin fibres and chitin whisker extracted from shrimp shell<br/>waste with different wt. % is considered in this research and finally the properties of<br/>xvii<br/>the prototype are compared to Egyptian synthetic plastic bags properties.<br/>Additionally, a statistical analysis was performed to define the most desirable type<br/>and concentration of filler for the reinforcement application. Experimental results<br/>showed that cellulose fibres, nano-cellulose fibres and chitin whisker with 25wt. %<br/>significantly enhanced the yield strength, fracture strength, and young`s modulus of<br/>chitosan in comparison with the unreinforced polymer. Thermal degradation<br/>temperature of the chitosan was improved by adding all fillers to chitosan composites<br/>which indicates that the nano composite thin films can compete with current<br/>thermoplastic synthetic polymers. Chitin fibres and nano-cellulose fibres improved<br/>the degradation rate of composites compared to pure chitosan. All fillers decreased<br/>the degree of swelling and solubility, which indicated the enhancement of composites<br/>physical properties upon adding the fillers. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English. |
| 650 #4 - Subject |
| Subject |
Nano- Science & Technology |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
Nano- Science & Technology |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
199 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
199 |