Fabrication Of Innovative Biopolymer Nanocomposites Thin Films For Degradable Food Bags / (Record no. 9069)

MARC details
000 -LEADER
fixed length control field 13166nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210830s2018 ||||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 620
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Amal Abdullah Mahmoud Ibrahim Elhussieny
245 1# - TITLE STATEMENT
Title Fabrication Of Innovative Biopolymer Nanocomposites Thin Films For Degradable Food Bags /
Statement of responsibility, etc. Amal Abdullah Mahmoud Ibrahim Elhussieny
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2018
300 ## - PHYSICAL DESCRIPTION
Extent 104 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor:
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2018 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Dedication………………………………………………………………………….. iv<br/>Acknowledgments……………………………………………………………………v<br/>Table of Content……………………………………………………………………..vi<br/>Nomenclature………………………………………………………………………..vii<br/>List of Tables …………………………………………………………………..…..viii<br/>List of Figures ………………………………………………………………………ix<br/>Abstract ……………………………………………………………….……………xvi<br/>Chapter (1) Introduction………..…………………………………………………1-6<br/>1.1.Background ………………………………………………………….……… 2<br/>1.2.Natural bio-polymer………………………………..……………….…………5<br/>1.3.Scope of objective ………………………….…………………………………5<br/>Chapter (2) Literature review…………...…………………………………………7-22<br/>2.1. Natural polymers……………………………………………………….8<br/>2.2. Composites………………………………………………………………… 9<br/>2.3. Chitin and chitosan ……………………………………………….10<br/>2.4. Cellulose…………………………………………………………..12<br/>2.4.1. Rice straw ………………………………………………………13<br/>2.5. Extraction methods of pure chitosan…………………………………….14<br/>2.6. Preparation methods of chitosan composites…………………….16<br/>2.6.1. Chitin fiber and chitin whisker as reinforced materials…………17<br/>2.6.2. Cellulosic fibers and cellulosic nanofibers extracted from rice straw<br/>waste as reinforced materials..................................................…...19<br/>2.6.3. Chitosan /cellulose composites………………………………………...20<br/>2.7. Summary…………………………………………………………………….22<br/>Chapter (3) Material and methods……..…………………………………………23-43<br/>vii<br/>3.1. Materials…………………………………………….………..…………………24<br/>3.2.1. Method of preparation…………………….………………...………………25<br/>3.2.1.1 Simple collection and preparation…………………………………………27<br/>3.2.1.2. Deproteinization (DP) of shrimp shell waste…………………..………….28<br/>3.2.1.3. Demineralization (DM) of shrimp shell waste…………………………….29<br/>3.2.1.4. Deacetylation (DD) of shrimp shell waste………….…….…………….…30<br/>3.2.1.5. Preparation of chitosan thin films…………………...…………………….31<br/>3.2.2. Extraction of chitosan (CS) from shrimp shells waste with different degrees of<br/>deacetylation…………………………………………………………………………32<br/>3.2.2.1. Preparation of chitosan (CS) thin film……………………….…………...32<br/>3.2.3. Nano-chitosan(NCS) synthesis and optimization…………….…………..…33<br/>3.2.3.1. Preparation of nano chitosan (NCS) thin films………………………..34<br/>3.2.4. Extraction of chitin whisker (WH)……………………………………….....34<br/>3.2.5. Extraction of Rice straw fibre (RS) and nano fibres (NRS) from Rice Straw<br/>waste…………………………………………………………………………………35<br/>3.2.6. Preparation of nano rice straw fibers (NRS)…………………….…………..35<br/>3.2.6. Preparation of CS composites thin films…………………………….……...36<br/>3.2.7. Preparation of NCS composites thin films…………………………….…….36<br/>3.3. Characterization of powders and fabricated thin films……………………….....37<br/>3.3.1. Nuclear magnetic resonance (1HNMR) for chitosan powder……………….37<br/>3.3.2. Fourier transformation Infrared (FT-IR) for powder and thin films………..37<br/>3.3.3. X-ray diffraction (XRD) for powders and thin films……………….……….38<br/>3.3.4. The particle size analysis for powders…………………………..…...………38<br/>3.3.5. Mechanical Test for thin films……………………………..………..….……38<br/>3.3.6. Nanoindentation for nano thin films………………………….....……..…....41<br/>3.3.7. Cryogenic scanning electron microscopy (SEM) for thin films……….…….42<br/>3.3.8. Thermal gravimetric analysis (TGA) for powders and thin films……...…….42<br/>3.3.9. In-soil degradation test for thin films………………………...……………….42<br/>3.3.10. Swelling and solubility test for thin films…………………..……………....43<br/>3.3.11. Statistical analysis for thin films………………..…………………………..43<br/>Chapter (4) Results and discussion……..………………………………………44-43<br/>4. Results and discussion for extracted chitosan powder with mechanical and<br/>chemical methods……………………………………………………………………46<br/>4.1.1HNMR of grounded and non-grounded chitosan<br/>powders…………………..46<br/>4.2. Fourier transformation Infrared (FT-IR) Spectra of grounded and nongrounded<br/>chitosan powder…………………………………………………………………...…47<br/>4.3.1HNMR of extracted non- grounded chitosan powder with three different degree<br/>of deacetylation………………………………………………………………………50<br/>viii<br/>5. Results and discussion for chitosan and nanochitosan composites with rice straw<br/>and nano-rice straw fibers…………………………………………………………...51<br/>5.1. Fourier transformation Infrared (FT-IR) Spectra of chitosan, nanochitosan with<br/>rice straw and nanorice straw thin films ……………………………………………52<br/>5.2. X-ray diffraction of rice straw and nanorice straw composites thin film…….54<br/>5.3. Particle size analysis of nanochitosan and nanorice straw powders………….56<br/>5.4. Mechanical properties of chitosan thin film composites………………………..57<br/>5.5. Nano indentation for nano chitosan nanorice straw composites thin films……..59<br/>5.6. Scanning electron microscopy (SEM) of rice straw and nanorice straw<br/>composites thin films………………………………………………………………...61<br/>5.7. Thermogravimetric analysis (TGA) of chitosan and nanochitosan composites..63<br/>5.8. In-soil Degradation test of chitosan and nano chitosan composites…………….65<br/>5.9. Swelling and solubility tests of chitosan composites thin films……………..…67<br/>5.10. Statistical analysis of chitosan and nano chitosan composites thin films……..69<br/>6. Results and discussion for chitosan and nanochitosan composites reinforced with<br/>chitin fibers and chitin whisker………………………………………………………73<br/>6.1. Fourier transformation Infrared (FT-IR) Spectra for chitin powder…………….75<br/>6.2. Fourier transformation Infrared (FT-IR) Spectra of chitosan, nanochitosan with<br/>chitin fibers and chitin whisker thin films…………………………………………...75<br/>6.3. X ray diffraction (XRD) of powders and composites thin films……………...78<br/>6.4. Particle size of chitin whisker………………………………………………….80<br/>6.5. Mechanical test of chitosan composites thin films………………………….…80<br/>6.6. Nano indentation for nano chitosan composites reinforced with chitin fibers and<br/>chitin whisker thin films…………………………………………………………...82<br/>6.7. Crayon Scanning Electron Microscope (C-SEM) of chitosan composites films<br/>reinforced with chitin and chitin whisker…………………………………………..84<br/>6.8. Thermogravimetric analysis (TGA) of chitosan composites reinforced with chitin<br/>fibers and chitin whisker thin<br/>films……………………………………………………………………….…………85<br/>6.9. In- Soil Degradation test of chitosan and nano chitosan composites reinforced<br/>with chitin fibers and chitin whisker thin films……………………………………...88<br/>6.10. Swelling and solubility tests of chitosan composites reinforced with chitin fibers<br/>and chitin whisker thin films…………………………………………………………90<br/>6.11. Statistical analysis of chitosan and nano chitosan composites reinforced with<br/>chitin fibers and chitin whisker thin films…………………………………………...91<br/>7. Conclusion……………………………………………………………….……….97<br/>8. Reference ……
520 3# - Abstract
Abstract Abstract:<br/>The currently used carrier bags are synthesized from polyethylene, which is based on<br/>a petroleum-based material (non-renewable source); need a several hundred years to<br/>decompose. Estimates of the number of plastic bags used annually worldwide vary in<br/>the range of 100 million to a trillion according to a New York Times article and only<br/>a small portion of these bags is recycled, and plenty are left to enter the waste stream.<br/>Because the production of such a huge number of bags is associated with a long time<br/>to decompose, the plastic bags that are thrown away create several ecological<br/>problems. Carrier bags based on natural materials such as natural bio-polymers<br/>composites do not pose environmental hazards. Moreover, there are continuous<br/>efforts to spread the use of bio-composite materials for various manufacturing<br/>purposes such as carrier bags production due to their biodegradability, low carbon<br/>emissions, low cost, and being from non-petroleum-based sources.<br/>The aim of this research is to investigate the physical, mechanical, chemical, and<br/>thermal properties of the nanocomposite films from natural polymers and determine<br/>their potential use as carrier bags. The potential use of chitosan films as a replacement<br/>to synthetic polymers in packaging industry applications is receiving huge attention<br/>by both the academic and industrial sectors due to its biodegradability and<br/>antimicrobial properties. In this study, the effect of different reaction times during the<br/>chemical transformation of chitosan to a natural polymer was explored. Furthermore,<br/>the current work focuses on the preparation of chitosan and nano-chitosan with<br/>various methods since the particle size of chitosan has a significant influence on the<br/>previously mentioned properties. In addition, reinforcement of the chitosan with<br/>natural fillers was studied. The purpose of using the fillers was to overcome the<br/>limitations in the physical and mechanical properties of chitosan and nano-chitosan.<br/>The addition of several fillers such as cellulose fibres, nano-cellulose fibres extracted<br/>from rice straw waste, chitin fibres and chitin whisker extracted from shrimp shell<br/>waste with different wt. % is considered in this research and finally the properties of<br/>xvii<br/>the prototype are compared to Egyptian synthetic plastic bags properties.<br/>Additionally, a statistical analysis was performed to define the most desirable type<br/>and concentration of filler for the reinforcement application. Experimental results<br/>showed that cellulose fibres, nano-cellulose fibres and chitin whisker with 25wt. %<br/>significantly enhanced the yield strength, fracture strength, and young`s modulus of<br/>chitosan in comparison with the unreinforced polymer. Thermal degradation<br/>temperature of the chitosan was improved by adding all fillers to chitosan composites<br/>which indicates that the nano composite thin films can compete with current<br/>thermoplastic synthetic polymers. Chitin fibres and nano-cellulose fibres improved<br/>the degradation rate of composites compared to pure chitosan. All fillers decreased<br/>the degree of swelling and solubility, which indicated the enhancement of composites<br/>physical properties upon adding the fillers.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Nano- Science & Technology
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Nano- Science & Technology
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 199
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 199
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/30/2021   620/A.E.F/2018 08/30/2021 08/30/2021 Thesis