Emotional Tone Detection in Arabic text using Deep Convolutional Neural Networks / (Record no. 9068)

MARC details
000 -LEADER
fixed length control field 10948nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210830s2018 |||||||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Amr Al-Khatib
245 1# - TITLE STATEMENT
Title Emotional Tone Detection in Arabic text using Deep Convolutional Neural Networks /
Statement of responsibility, etc. Amr Al-Khatib
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2018
300 ## - PHYSICAL DESCRIPTION
Extent 78 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
General note Supervisor: Samhaa El-Beltagy
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2018 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Abstract ........................................................................................................................................ II<br/>Acknowledgements ................................................................................................................... IV<br/>Table of Contents ....................................................................................................................... VI<br/>List of Figures .............................................................................................................................. IX<br/>List of Tables ............................................................................................................................... X<br/>1 Introduction .............................................................................................................................. 1<br/>1.1 Emotion Models .................................................................................................................... 2<br/>1.2 Artificial Neural Networks ................................................................................................. 2<br/>1.2.1 Historical Background ..................................................................................................... 2<br/>1.2.2 ANNs Design ....................................................................................................................... 3<br/>1.2.3 Activation Functions ......................................................................................................... 5<br/>1.2.4 Backpropagation ............................................................................................................... 8<br/>1.2.5 Regularization .................................................................................................................. 11<br/>1.3 Emotion Detection Approaches ...................................................................................... 13<br/>1.4 Objectives and Contributions .......................................................................................... 14<br/>1.5 Thesis Outline ...................................................................................................................... 15<br/>VII<br/>2 Datasets for Emotion Detection in Arabic Text ............................................................... 17<br/>2.1 Collecting Data .................................................................................................................... 17<br/>2.2 Lexical Approach in Data Annotation ............................................................................ 19<br/>2.3 Automatic Data Annotation .............................................................................................. 19<br/>2.4 Summary .............................................................................................................................. 20<br/>3 Representation of Short Text .............................................................................................. 22<br/>3.1 Different Model Architectures for Distributed Word Representation ................... 23<br/>3.2 Continuous Bag of Words and Skip Gram ..................................................................... 24<br/>3.2.1 Continuous Bag of Words Model (CBOW) ................................................................. 24<br/>3.2.2 Skip Gram Model ............................................................................................................. 24<br/>4 State of The Art ....................................................................................................................... 27<br/>4.1 Application of Deep Learning to Sentiment Analysis ................................................. 27<br/>4.2 Application of Convolutional Neural Networks to Sentiment Analysis ................. 28<br/>4.2.1 Multiple CNN Model Variations for Sentence Classification .................................. 30<br/>4.2.2 Effect of Words’ Representation on System’s Performance .................................. 32<br/>4.2.3 Character to Sentence Level Representation for Text Classification ................... 34<br/>4.2.4 Arabic Sentiment Classification with CNN ................................................................ 37<br/>4.2.5 Short Text Classification with CNNs ........................................................................... 39<br/>4.2.6 Sensitivity Analysis of CNN Components ................................................................... 40<br/>4.3 Summary .............................................................................................................................. 43<br/>5 Collecting and Experimenting with the Arabic Emotions Twitter Dataset ............... 44<br/>5.1 Data Collection .................................................................................................................... 44<br/>5.2 Data Preprocessing ............................................................................................................ 46<br/>VIII<br/>5.3 Baseline Experiments and Results ................................................................................. 48<br/>5.3.1 Results using the Naïve Bayes Classifier .................................................................... 48<br/>5.3.2 Results using the Complement Naïve Bayes Classifier ........................................... 49<br/>5.3.3 Sequential Minimal Optimization ................................................................................ 50<br/>5.4 Summary .............................................................................................................................. 50<br/>6 Experiments and Building a Convolutional Neural Network for Emotion Detection ...................................................................................................................................................... 51<br/>6.1 The First Deep Convolutional Neural Network Model ............................................... 52<br/>6.2 Eight One Versus All Deep Convolutional Neural Networks .................................... 56<br/>6.3 Using Pretrained Word Vectors ...................................................................................... 59<br/>6.4 Training Word Vectors with Distributed Representation of Sentences ................ 60<br/>6.4.1 Training Word Vectors with Doc2Vec ........................................................................ 62<br/>6.4.2 Training Vectors of Stemmed Words with Doc2Vec ............................................... 64<br/>6.5 Experiment Doc2vec Training Method of Word Vectors with English Datasets .. 65<br/>6.5.1 Experiment Doc2vec Training Method of Word Vectors with SST (Fine Grained) ..................................................................................................................................... 66<br/>6.5.2 Experiment Doc2vec Training Method of Word Vectors with SST (Binary) ..... 67<br/>6.5.3 Experiment Doc2vec Training Method of Word Vectors with TREC ................... 68<br/>6.5.4 Comparison with Other Methods ................................................................................ 69<br/>6.6 Summary .............................................................................................................................. 70<br/>7 Conclusion and Future Work .............................................................................................. 71<br/>8 References ............................................................................................................................... 73
520 3# - Abstract
Abstract Abstract:<br/>Emotion detection in Arabic text is an emerging research area, but the efforts in this new field have been hindered by the very limited availability of Arabic datasets annotated with emotions. In this thesis, we review work that has been carried out in the area of emotion analysis in Arabic text. We also review the work that has been done in sentiment analysis using convolutional neural networks, as it is closely related to the task of emotion detection and has yielded very interesting results.<br/>The efforts and methodologies followed to collect, clean, and annotate an Arabic tweet dataset for experimentation and evaluation is presented. Preliminary experiments carried out on this dataset are described. The results of these experiments are provided as a benchmark for future studies and comparisons with other emotion detection models.<br/>This work is aimed at exploring deep learning as a better model for detecting emotions in Arabic text. The proposed work experimented with two deep learning models. The first model is composed of a convolutional layer with max-pooling function followed by three fully connected layers and soft-max output layer, while the second model is a combination of eight convolutional neural networks all of which are similar to the first model but which employ one versus all strategy for classification (each neural network predicts one emotion versus all the rest emotion classes). The results of the two models did not meet our expectations (about 52% and 47% overall accuracies for the first and the second models respectively), and due to the computational cost of the second model it was omitted from further experiments.<br/>Observing that the results of these models fell below expectations, we created a new approach to train word embeddings for the proposed models. We call this approach, class directed embeddings. In this approach, all words from the same emotion class share a common class vector that acts as the context for that class. As a result, words that are used<br/>III<br/>distinctively within a particular class, will bear vectors that are closer to each other in the embedding space and will be more discriminative towards that class. We then tested our convolutional neural network with the new set of word embeddings, and the results were surprisingly high.<br/>To validate this novel approach, it was applied to English datasets that have been widely tested for other text classification tasks such as sentiment analysis and questions classification. In most cases, the results obtained using the approach proposed in this thesis, outperformed the stated of the art.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Wireless Technologies
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Wireless Technologies
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 327
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 327
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/30/2021   005 / A.K.E / 2018 08/30/2021 08/30/2021 Thesis