Predicting Remaining Cycle Time from Ongoing Cases: (Record no. 9034)

MARC details
000 -LEADER
fixed length control field 04357nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210318b2021 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Fadi Nader Zaki Baskharon
245 1# - TITLE STATEMENT
Title Predicting Remaining Cycle Time from Ongoing Cases:
Remainder of title A Survival Analysis-Based Approach /
Statement of responsibility, etc. Fadi Nader Zaki Baskharon
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2021
300 ## - PHYSICAL DESCRIPTION
Extent 51 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed A. ElHelw
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2021 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2 Thesis Outline and Summary of Contributions . . . . . . . . . . . . . . . . . . 4<br/>2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.1.2 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1.3 Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.1.4 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 15<br/>2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>2.3 Baseline Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>3. Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.2 Optimization function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>3.3 Output interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br/>4.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br/>4.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>vii<br/>5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br/>5.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br/>5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>Appendices:<br/>A. cycle prediction documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>Bibliography .
520 3# - Abstract
Abstract Abstract:<br/>in predictive process monitoring. Different approaches that learn from event logs, e.g., relying<br/>on an existing representation of the process or leveraging machine learning approaches, have<br/>been proposed in the literature to tackle this problem. Machine learning-based techniques have<br/>shown superiority over other techniques with respect to the accuracy of the prediction as well<br/>as freedom from knowledge about the underlying process models generating the logs. However,<br/>all proposed approaches only learn from complete traces. This might cause delays in starting<br/>new training cycles as usually process instances last over a long time that could even reach<br/>months or years.<br/>In this thesis, we propose a machine learning approach that can also accept and learn from<br/>incomplete (ongoing) traces. Using a time-aware survival analysis technique, we can train a<br/>neural network to predict the most likely remaining cycle time of a running case.<br/>This approach is evaluated on different real-life datasets and is compared with a state-ofthe-<br/>art baseline. Results show that our approach, in most cases, is able to outperform the<br/>baseline approach with a simple model architecture and less training time.<br/>The approach is further enhanced to learn from trace level - fixed - features as well as the<br/>events-related features. We empirically proved that trace-level features enhance the prediction<br/>power of the model using a real-life dataset.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 499
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 03/18/2021   610/ F.B.P/ 2021 03/18/2021 03/18/2021 Thesis