Memristor And Inverse Memristor Emulators And Applications / (Record no. 9013)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 09911nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 210314b2020 a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | EG-CaNU |
| Transcribing agency | EG-CaNU |
| 041 0# - Language Code | |
| Language code of text | eng |
| Language code of abstract | eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 621 |
| 100 0# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Haneen Gamal Mohamed |
| 245 1# - TITLE STATEMENT | |
| Title | Memristor And Inverse Memristor Emulators And Applications / |
| Statement of responsibility, etc. | Haneen Gamal Mohamed |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
| Date of publication, distribution, etc. | 2020 |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 114 p. |
| Other physical details | ill. |
| Dimensions | 21 cm. |
| 500 ## - GENERAL NOTE | |
| Materials specified | Supervisor:Ahmed G. Radwan |
| 502 ## - Dissertation Note | |
| Dissertation type | Thesis (M.A.)—Nile University, Egypt, 2020 . |
| 504 ## - Bibliography | |
| Bibliography | "Includes bibliographical references" |
| 505 0# - Contents | |
| Formatted contents note | Contents:<br/> CHAPTER 1 : INTRODUCTION .............................................................................. 10<br/>1.1. SCOPE ................................................................................................ 10<br/>1.2. ORGANIZATION OF THESIS .................................................................. 10<br/>CHAPTER 2 : LITERATURE SURVEY .................................................................. 12<br/>2.1. MEMRISTOR MODELS ......................................................................... 13<br/>2.1.1. Linear Ion Drift: .................................................................................... 17<br/>2.1.1.1. The frequency response of the resistance of memristors: ......................................... 18<br/>2.1.2. Non-linear Ion Drift Model: .................................................................. 20<br/>2.1.3. Simmons Tunneling Model: .................................................................. 22<br/>2.1.4. TEAM (ThrEshold Adaptive Memristor Model): ................................. 23<br/>2.1.5. VTEAM (Voltage Threshold Assisted Model) : ................................... 23<br/>2.2. WINDOW FUNCTIONS ......................................................................... 24<br/>2.2.1. Joglekar: ................................................................................................ 25<br/>2.2.1. Biolek: ................................................................................................... 25<br/>2.2.2. Strukovet. al: ......................................................................................... 27<br/>2.2.3. Benderliet. al: ........................................................................................ 28<br/>2.2.4. TEAM: .................................................................................................. 29<br/>2.2.5. Prodromakis: ......................................................................................... 30<br/>2.3. APPLICATIONS .................................................................................... 30<br/>2.3.1. Digital Applications .............................................................................. 30<br/>2.3.1. Chaotic Oscillator Circuit ...................................................................... 33<br/>2.3.2. Relaxation oscillator .............................................................................. 34<br/>CHAPTER 3 : SYMMETRIC AND ASYMMETRIC MEMRISTOR-BASED<br/>VOLTAGE CONTROLLED RELAXATION OSCILLATOR AND<br/>APPLICATIONS .......................................................................................................... 36<br/>3.1. INTRODUCTION ................................................................................... 36<br/>3.2. R-M AND M-R BASED VOLTAGE-CONTROLLED OSCILLATOR .......... 37<br/>3.2.1. Mathematical Analysis .......................................................................... 38<br/>3.2.2. R-M Voltage Based Relaxation Oscillator: (i.e. ′ = 0 ).................... 39<br/>3.2.2.1. Oscillation Condition ............................................................................................... 40<br/>3.2.2.2. Oscillation Frequency .............................................................................................. 41<br/>3.3. M -R BASED RELAXATION OSCILLATOR: (I.E. ′ = 0 ) .................... 42<br/>3.4. INTRODUCTION ................................................................................... 54<br/>3.5. SIMULATION RESULTS AND APPLICATIONS ........................................ 45<br/>3.5.1. SPICE Simulations with linear HP model ............................................. 45<br/>iii<br/>3.6. POWER CONSUMPTION OF MEMRISTOR-BASED OSCILLATOR: ............. 47<br/>3.7. SIMULATIONS WITH A NON-LINEAR EXPONENTIAL MODEL ................. 47<br/>3.8. APPLICATION: FREQUENCY MODULATOR .......................................... 51<br/>3.9. VOLTAGE-CONTROLLED ASYMMETRIC OSCILLATOR ......................... 52<br/>CHAPTER 4 : INVERSE MEMRISTOR AND ITS EMULATORS ...................... 54<br/>4.1. INVERSE MEMRISTOR MODEL ............................................................. 55<br/>4.2. MODEL OF SERIES AND PARALLEL CONNECTED NETWORKS WITH<br/>MEMRISTOR AND INVERSE MEMRISTOR ........................................................................ 56<br/>4.3. CIRCUIT IDENTIFICATION AND NUMERICAL SIMULATIONS ................. 57<br/>4.3.1. Impedance Analysis .............................................................................. 59<br/>4.4. DIFFERENT NETWORK COMBINATIONS OF MEMRISTIVE ELEMENTS<br/>FROM THE GENERAL EQUATION. ................................................................................... 61<br/>4.5. INVERSE MEMRISTOR EMULATOR ....................................................... 73<br/>4.5.1. Current-Controlled Inverse Memristor Emulator based Multiplier ....... 73<br/>4.5.2. Inverse Memristor Emulator Based Threshold ..................................... 76<br/>4.5.3. Combined Memristor- Inverse Memristor Emulator Based BJT<br/>Transistor 78<br/>4.5.4. Experimental Result .............................................................................. 79<br/>4.5.5. Discussion and Comparison .................................................................. 82<br/>4.6. INVERSE MEMCAPACITOR AND MEMINDUCTOR .................................. 82<br/>4.6.1. Inverse meminductor ............................................................................. 82<br/>4.6.1.1. Inverse meminductor mathematical model .............................................................. 82<br/>4.6.1.2. Circuit realization of Inverse meminductor model ................................................... 86<br/>CHAPTER 5 : ANALOG PWL MEMRISTOR EMULATOR ............................... 88<br/>5.1. INTRODUCTION ................................................................................... 88<br/>5.2. PROPOSED PWLM SWITCHING MODEL MEMRISTOR ......................... 89<br/>5.2.1. Two-Level PWL Switching Memristor Model ..................................... 89<br/>5.2.2. Multi-Level PWL Switching Memristor Model .................................... 91<br/>5.3. LOOP FILTER OF PHASE-LOCKED LOOP (APPLICATION) ..................... 96<br/>CHAPTER 6 : DISCUSSION AND CONCLUSIONS .............................................. 98<br/>REFERENCES ........................................................................................................... |
| 520 3# - Abstract | |
| Abstract | Abstract:<br/>Memristor based oscillators are an essential subject of non-linear circuit theory in<br/>which relaxation oscillators can be constructed without reactive components. A family<br/>of voltage-controlled relaxation oscillators based on memristor is summed up in this<br/>thesis. The function of memristor dependent voltage control oscillator circuits is proved<br/>with mathematical modeling and circuit analysis. For the frequency and conditions of<br/>characteristic oscillation, expressions are obtained in multiple situations where a<br/>closed-form for each case is added. The effect on the frequency and conditions of the<br/>swing of circuit parameters is numerically evaluated. However, multiple transient<br/>SPICE simulations are used to test the resulting equations. With numerically analysis<br/>and SPICE simulations, the power output of each oscillator is accomplished and<br/>verified. Besides, a memristive oscillator control with a voltage allows for additional<br/>freedom in the design, which improves design versatility. To show the oscillation<br/>principle concept, the nonlinear exponential memristor model is used and tested well.<br/>For this procedure, the reference voltage influence on the output voltage is expanded<br/>using two instances of the voltage-controlled memory-based stimulation oscillator<br/>(VCO). This VCO has a small size (nanoscale) and is more compact relative to the<br/>standard storage devices.<br/>Also, three different inverse memristor emulators based on several active blocks<br/>are presented. One of the proposed emulators is realized by a second-generation current<br/>conveyor (CCII) and analog voltage multiplier with passive elements. The other two<br/>introduced emulators are designed using the current feedback operational amplifier<br/>(CFOA) with two switches or two BJT transistors. One of the proposed emulators has<br/>the advantage that it switches between the inverse memristor and memristor at the same<br/>time but in different frequencies with a smaller number of components. The introduced<br/>circuitry is simulated to validate the concept of inverse memristor showing the pinched<br/>hysteresis loop in the I-V plane. One selected emulator is verified experimentally. A<br/>comparison of the three proposed emulators is presented to highlight the number of<br/>active, passive components, and the range of frequency.<br/>Finally, an analog PWL memristor model is presented with different levels that can<br/>be implemented on an FPGA in future work and show that such an implementation can<br/>be used to generate chaos, as an example. So necessarily, it has been emulated<br/>memristor behavior using programmable transistor circuits. Then will be used this<br/>implementation as a module to mimic chaotic generators later. By using FPGAs and<br/>implementing chaotic generators will be something that has not come across before. |
| 546 ## - Language Note | |
| Language Note | Text in English, abstracts in English. |
| 650 #4 - Subject | |
| Subject | MSD |
| 655 #7 - Index Term-Genre/Form | |
| Source of term | NULIB |
| focus term | Dissertation, Academic |
| 690 ## - Subject | |
| School | MSD |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | Thesis |
| 650 #4 - Subject | |
| -- | 317 |
| 655 #7 - Index Term-Genre/Form | |
| -- | 187 |
| 690 ## - Subject | |
| -- | 317 |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Main library | Main library | 03/14/2021 | 621/ H.G.M / 2020 | 03/14/2021 | 03/14/2021 | Thesis |