MARC details
| 000 -LEADER |
| fixed length control field |
04098nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
210223b2009 a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
005 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Aly Mahmoud Mohamed AbdelRahman ElGamal |
| 245 1# - TITLE STATEMENT |
| Title |
Information Theoretic Secrecy in Two-Way Channels / |
| Statement of responsibility, etc. |
Aly Mahmoud Mohamed AbdelRahman ElGamal |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2009 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
72 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| Materials specified |
Supervisor: Moustafa Youssef |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2009 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2. The One-Way Wire-Tap Channel . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>2.2 The Discrete Memoryless Wire-Tap Channel . . . . . . . . . . . . . 10<br/>2.3 The Gaussian Wire-Tap Channel . . . . . . . . . . . . . . . . . . . 13<br/>3. Achievable Secrecy Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br/>3.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 15<br/>3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>3.3 Discrete Memoryless Channels . . . . . . . . . . . . . . . . . . . . 18<br/>3.4 The Gaussian Channel . . . . . . . . . . . . . . . . . . . . . . . . . 24<br/>v<br/>4. A Practical Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>4.1 System Model and Notation . . . . . . . . . . . . . . . . . . . . . . 30<br/>4.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>4.2.1 One-Way Communication with Feedback . . . . . . . . . . . 32<br/>4.2.2 Two-Way Communication with Randomized Scheduling . . 33<br/>4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>Bibliography . . . . . . . . . . . . . |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>This thesis is concerned with the study of realizing reliable and secure twoway<br/>communication in the presence of a passive eavesdropper (Eve). Our approach<br/>achieves perfect information theoretic secrecy via a novel scheme that employs both<br/>random binning and channel prefixing. The key idea is to let both users jointly optimize<br/>the prefix channel distributions, such that their new channel conditions are<br/>favorable compared to Eve’s channel. Random binning is then used to exploit the<br/>secrecy advantage offered by the cascade channel. An achievable rate region for the<br/>general discrete memoryless channel is provided, and a corollary for the modulo-two<br/>channel is given. Next, a practical setting, where the nodes have half-duplex antennas,<br/>is explored for the modulo-two and Gaussian channels. In the Gaussian setting,<br/>the channel coefficients are based on a free space path loss model. In this setting, we<br/>use a randomized scheduling and power allocation scheme, where we allow Alice and<br/>Bob to send symbols at random time instants. While Alice will be able to determine<br/>the symbols transmitted by Bob, Eve will suffer from ambiguity regarding the source<br/>of any particular symbol. This desirable ambiguity is enhanced, in our approach, by<br/>randomizing the transmit power level. Finally, we interpret our results in an experimental<br/>setup using IEEE 802.15.4-enabled sensor boards, and show that a Wireless<br/>Body Area Network (WBAN) is a natural application to our approach. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English. |
| 650 #4 - Subject |
| Subject |
Wireless Technologies |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
Wireless Technologies |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
327 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
327 |