Analysis and optimization of caching techniques in eireless networks : (Record no. 8964)

MARC details
000 -LEADER
fixed length control field 06109nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210223b2017 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmed Mohamed Magdy Ahmed
245 1# - TITLE STATEMENT
Title Analysis and optimization of caching techniques in eireless networks :
Remainder of title reactive and proactive paradigm /
Statement of responsibility, etc. Ahmed Mohamed Magdy Ahmed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2017
300 ## - PHYSICAL DESCRIPTION
Extent 83 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohammed Nafie
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2017 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2. Dynamic Proactive Caching in Relay Networks . . . . . . . . . . . . . . 9<br/>2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.3 Lower Bound and Proposed Policy . . . . . . . . . . . . . . . . . . 16<br/>2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.4.1 Impact of number of files on the cost reduction gain . . . . 23<br/>2.4.2 Impact of Zipf parameter on cost reduction gain . . . . . . . 25<br/>2.4.3 Comparison with caching at end user . . . . . . . . . . . . . 26<br/>2.4.4 Impact of prediction window size on the expected cost . . . 29<br/>3. On Optimal Dynamic Caching in Relay Networks . . . . . . . . . . . . . 31<br/>3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>3.3 Lower Bound and Proposed Policy . . . . . . . . . . . . . . . . . . 36<br/>3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>3.4.1 Time average cost across time horizon . . . . . . . . . . . . 41<br/>viii<br/>3.4.2 Impact of block size on time average cost . . . . . . . . . . 43<br/>3.4.3 Impact of number of files on time average cost . . . . . . . . 43<br/>3.4.4 Impact of Zipf parameter on time average cost . . . . . . . 45<br/>3.4.5 Impact of relative channel cost on time average cost . . . . 46<br/>3.4.6 Comparison with no caching and LRU schemes . . . . . . . 47<br/>4. Towards Optimal Resource Allocation in Caching Relay Networks . . . . 49<br/>4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br/>4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>4.2.1 Main Problem . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>4.2.2 Optimal Service Portion . . . . . . . . . . . . . . . . . . . . 53<br/>4.2.3 Final Problem . . . . . . . . . . . . . . . . . . . . . . . . . 57<br/>4.2.4 Proposed Caching Technique . . . . . . . . . . . . . . . . . 58<br/>4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br/>5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>5.1 Finding and Observations . . . . . . . . . . . . . . . . . . . . . . . 65<br/>5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br/>Bibliography . . . . . . . . . .
520 3# - Abstract
Abstract Abstract:<br/>In this work, we explore the performance of caching in relay networks. First, we<br/>investigate the idea of proactive caching in relay networks. Second, we investigate<br/>dynamic content caching in non-proactive networks. Third, we investigate the optimal<br/>time average transmission energy resulting from caching in non-proactive relay<br/>networks.<br/>In the first part of this work, we investigate the performance of dynamic proactive<br/>caching in relay networks where an intermediate relay station caches content for<br/>potential future use by end users. A central base station proactively controls the<br/>cache allocation such that cached content remains fresh for consumption for a limited<br/>number of time slots called proactive service window. With uncertain user demand<br/>over multiple data items and dynamically changing wireless links, we consider the<br/>optimal allocation of relay station’s cache to minimize the time average expected<br/>service cost. We characterize a fundamental lower bound on the cost achieved by<br/>any proactive caching policy. Then we develop an asymptotically optimal caching<br/>policy that attains the lower bound as the proactive caching window size grows. We<br/>provide numerical simulations to validate our analytical findings and demonstrate<br/>performance merits.<br/>In the second part, we investigate dynamic content caching in relay networks where<br/>an intermediate relay station (RS) can adaptively cache data content based on their<br/>iv<br/>varying popularity. With the objective of minimizing the time average cost of content<br/>delivery, we formulate and study the problem of optimal RS cache allocation when<br/>the popularities of data content are unknown apriori to the network. While optimal<br/>dynamic cache control suffers the curse of dimensionality, we develop a fundamental<br/>lower bound on the achievable cost by any caching policy. Inspired by the structure of<br/>such lower bound, we develop a reduced-complexity policy that is shown numerically<br/>to perform close to the lower bound.<br/>In the third part of this work, we investigate the performance of caching in relay<br/>networks where an intermediate relay station (RS) caches content for future demand<br/>by end users. With uncertain user demand over multiple data items and dynamically<br/>changing wireless links, we characterize the optimal transmission time for serving data<br/>items, cached data portion allocation of relay station and optimal service portion, as<br/>a part from the cached portion, to minimize the total average transmission energy.<br/>We argue that under several settings fully caching the higher popular items is the<br/>optimal caching policy which minimizes the total expected transmission energy.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Wireless Technologies
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Wireless Technologies
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 327
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 327
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 02/23/2021   005/ A.A.A 2017 02/23/2021 02/23/2021 Thesis