Interference Management In Spectrally and Energy Efficient Wireless Networks / (Record no. 8959)

MARC details
000 -LEADER
fixed length control field 08044nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210223b2016 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mohamed Seif Eldin Mohamed Abdelmoneim Mohamed
245 1# - TITLE STATEMENT
Title Interference Management In Spectrally and Energy Efficient Wireless Networks /
Statement of responsibility, etc. Mohamed Seif Eldin Mohamed Abdelmoneim Mohamed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2016
300 ## - PHYSICAL DESCRIPTION
Extent 96 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed Nafie
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2016 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2. Achievable Degrees of Freedom of the K-user MISO Broadcast Channel<br/>with Alternating CSIT via Interference Creation-Resurrection . . . . . . 4<br/>2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.3 Proposed Interference Creation-Resurrection Scheme . . . . . . . . 11<br/>2.3.1 Phase 1: Interference Creation . . . . . . . . . . . . . . 12<br/>2.3.2 Phase 2: Interference Resurrection . . . . . . . . . . . . 13<br/>2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>3. Sparse Spectrum Sensing in Infrastructure-less Cognitive Radio Networks<br/>via Binary Consensus Algorithms . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>x<br/>3.2.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . 25<br/>3.2.2 Binary Consensus Algorithm . . . . . . . . . . . . . . . . . 27<br/>3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>3.4 Proposed Sensing Scheme . . . . . . . . . . . . . . . . . . . . . . . 33<br/>3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>4. Cooperative D2D Communication in Downlink Cellular Networks with<br/>Energy Harvesting Constraints . . . . . . . . . . . . . . . . . . . . . . . 42<br/>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br/>4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>4.2.1 Direct Transmission Scheme . . . . . . . . . . . . . . . . . . 47<br/>4.2.2 Cooperative Transmission Scheme . . . . . . . . . . . . . . 47<br/>4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>5. Sparse Signal Processing Concepts for Efficient 5G System Design . . . . 59<br/>5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>5.2 Enabling 5G Technical Concepts . . . . . . . . . . . . . . . . . . . 60<br/>5.3 Joint Activity and Data Detection for Machine to Machine Communication<br/>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5.5 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br/>5.6 Proposed Solutions for Activity and Data Detection . . . . . . . . 64<br/>5.6.1 Generalized Likelihood Ratio Test . . . . . . . . . . . . . . 64<br/>5.6.2 MMSE Activity Recovery . . . . . . . . . . . . . . . . . . . 65<br/>6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>6.2 Future Work: Joint Activity and Data Detection for Machine to<br/>Machine Communication . . . . . . . . . . . . . . . . . . . . . . . . 68<br/>6.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br/>6.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br/>6.4.1 Proposed Solutions for Activity and Data Detection . . . . 71<br/>6.4.2 Generalized Likelihood Ratio Test . . . . . . . . . . . . . . 71<br/>6.4.3 MMSE Activity Recovery . . . . . . . . . . . . . . . . . . . 71<br/>Bibliography . . . . . . . . . . . . . . .
520 3# - Abstract
Abstract Abstract:<br/>In this thesis, we explore different trends in the design of wireless networks. The<br/>first work of this thesis, we investigate on the interference management problem with<br/>limited channel state information in wireless network specifically at the transmitter(s).<br/>Channel state information at the transmitter affects the degrees of freedom of the<br/>wireless networks. In this paper, we analyze the DoF for the K-user multiple-input<br/>single-output (MISO) broadcast channel (BC) with synergistic alternating channel<br/>state information at the transmitter (CSIT). Specifically, the CSIT of each user alternates<br/>between three states, namely, perfect CSIT (P), delayed CSIT (D) and no<br/>CSIT (N) among different time slots. For the K-user MISO BC, we show that the<br/>total achievable degrees of freedom (DoF) are given by K2<br/>2K−1 through utilizing the<br/>synergistic benefits of CSIT patterns. We compare the achievable DoF with results<br/>reported previously in the literature in the case of delayed CSIT and hybrid CSIT<br/>models.<br/>Secondly, Compressive Sensing (CS) is utilized in Cognitive Radio Networks (CRNs)<br/>to exploit the sparse nature of the occupation of the primary users. Also, distributed<br/>spectrum sensing has been proposed to tackle the wireless channel problems, like<br/>node or link failures, rather than the common “centralized approach” for spectrum<br/>sensing. In this work, we propose a distributed spectrum sensing framework based on<br/>consensus algorithms where SU nodes exchange their binary decisions to take global<br/>decisions without a fusion center to coordinate the sensing process. Each SU will<br/>share its decision with its neighbors, and at every new iteration each SU will take a<br/>new decision based on its current decision and the decisions it receives from its neighbors;<br/>in the next iteration, each SU will share its new decision with its neighbors. We<br/>show via simulations that the detection performance can tend to the performance of<br/>majority-rule Fusion Center based CRNs.<br/>As a solution for the spectrum shrinkage, Device-to-Device (D2D) communications<br/>have been highlighted as one of the promising solutions to enhance spectrum<br/>utilization of LTE-Advanced networks. In this work, we consider a D2D transmitter<br/>cooperating with a cellular network by acting as a relay serve one of the cellular user<br/>equipments. We consider the case in which the D2D transmitter is equipped with<br/>an energy harvesting capability. We investigate the tradeoff between the amount of<br/>energy used for relaying and the energy used for decoding the cellular user data. We<br/>formulate an optimization problem to maximize the cellular user rate subject to a<br/>minimum rate requirement constraint for the D2D link. Finally, we show via numerical<br/>simulations the benefits of our cooperation-based system as compared to the<br/>non-cooperative scenario.<br/>It is inevitable that, 4G will not be able to the user demands that is the data traffic<br/>is growing exponentially. Due to the advent of Compressive Sensing (CS), methods<br/>that can optimally exploit sparsity in signals that will be the key enabler in the design<br/>of 5G systems. We give a glimpse on the future design aspects in 5G communications<br/>systems. Besides that, a new type of communication system called Machine-to-<br/>Machine (M2M) communications that will be involved with a salient portion of the<br/>5G data traffic is highlighted. We study the problem of multi-user detection (MUD)<br/>in M2M communications utilizing the tool of CS, also, proposing different recovery<br/>techniques with the aid of multiple antennas techniques.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Wireless Technologies
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Wireless Technologies
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 327
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 327
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 02/23/2021   005/ M.M.I 2016 02/23/2021 02/23/2021 Thesis