A Novel Semi-Custom Design Flow to Tackle the Influence of Wires in Deep Sub-Micron Technologies / (Record no. 8909)

MARC details
000 -LEADER
fixed length control field 08888nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210215b2012 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Alaaeldin Mohamed AbdelRazek Medra
245 1# - TITLE STATEMENT
Title A Novel Semi-Custom Design Flow to Tackle the Influence of Wires in Deep Sub-Micron Technologies /
Statement of responsibility, etc. Alaaeldin Mohamed AbdelRazek Medra
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2012
300 ## - PHYSICAL DESCRIPTION
Extent 99 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Rafik Guindi
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2012 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Future Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.3 Physical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2. Conventional Standard Cell Flow . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.2 Circuit Description and RTL Simulation . . . . . . . . . . . . . . . 9<br/>2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.3.1 Analysis and Elaboration . . . . . . . . . . . . . . . . . . . 11<br/>2.3.2 Setting Design Environment and Constraints . . . . . . . . 12<br/>2.3.3 Defining Optimization Settings . . . . . . . . . . . . . . . . 14<br/>2.3.4 Mapping and Optimization . . . . . . . . . . . . . . . . . . 15<br/>2.3.5 Initial Placement and Routing and Incremental Optimization 16<br/>viii<br/>2.3.6 Output Generation . . . . . . . . . . . . . . . . . . . . . . . 16<br/>2.4 Post Synthesis Verification . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.4.1 Timing and Area . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.4.2 Gate Level Simulation . . . . . . . . . . . . . . . . . . . . . 19<br/>2.4.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . 20<br/>2.5 Automatic Placement and Routing . . . . . . . . . . . . . . . . . . 22<br/>2.5.1 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>2.5.2 Floorplanning and Macro Placement . . . . . . . . . . . . . 24<br/>2.5.3 Power Planning . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>2.5.4 Special Routing . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>2.5.5 Standard Cells Placement . . . . . . . . . . . . . . . . . . . 26<br/>2.5.6 Clock Tree Synthesis . . . . . . . . . . . . . . . . . . . . . . 27<br/>2.5.7 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>2.6 Post-Layout Verification . . . . . . . . . . . . . . . . . . . . . . . 29<br/>2.6.1 Design Rule checking . . . . . . . . . . . . . . . . . . . . . . 29<br/>2.6.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>2.6.3 Gate Level Simulation . . . . . . . . . . . . . . . . . . . . . 30<br/>2.6.4 Power Calculations . . . . . . . . . . . . . . . . . . . . . . . 30<br/>2.7 Problems in Deep Sub-Micron Technologies . . . . . . . . . . . . . 30<br/>3. Proposed Semi-Custom Design Flow . . . . . . . . . . . . . . . . . . . . 32<br/>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>3.2 Background on Bit-Sliced Data-Path . . . . . . . . . . . . . . . . . 33<br/>3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>3.4 Structured Data Path (SDP) . . . . . . . . . . . . . . . . . . . . . 38<br/>3.4.1 SDP File Format . . . . . . . . . . . . . . . . . . . . . . . 38<br/>3.4.2 SDP File Generation . . . . . . . . . . . . . . . . . . . . . . 42<br/>3.5 Proposed Semi-custom Design Flow . . . . . . . . . . . . . . . . . . 44<br/>3.5.1 Circuit Structure Description . . . . . . . . . . . . . . . . . 45<br/>3.5.2 Relative Placement Constraints . . . . . . . . . . . . . . . . 47<br/>3.5.3 Routing Constraints . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.5.4 Gate-Level Net-list Generation . . . . . . . . . . . . . . . . 49<br/>3.5.5 Post Synthesis Verification . . . . . . . . . . . . . . . . . . . 50<br/>3.5.6 Placement and Routing . . . . . . . . . . . . . . . . . . . . 50<br/>3.5.7 Post Layout Verification . . . . . . . . . . . . . . . . . . . 52<br/>3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>4. Application Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.1 Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.2 Processor Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>ix<br/>4.2.1 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>4.2.2 Cluster Level . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br/>4.2.3 Engine and Slice Level . . . . . . . . . . . . . . . . . . . . . 59<br/>4.2.4 Unit Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>5. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>5.1.1 Technology Libraries . . . . . . . . . . . . . . . . . . . . . . 65<br/>5.1.2 Operating Conditions and Constraints . . . . . . . . . . . . 65<br/>5.2 Conventional Standard Cell Flow . . . . . . . . . . . . . . . . . . . 66<br/>5.3 Proposed Semi-Custom Design Flow . . . . . . . . . . . . . . . . . 68<br/>5.4 Results in Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 74<br/>6. Conclusion and Future work . . . . . . . . . . . . . . . . . . . . . . . . . 77<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br/>6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>6.2.1 Netlist Optimization . . . . . . . . . . . . . . . . . . . . . . 78<br/>6.2.2 Flop Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>6.2.3 Future Technology Nodes . . . . . . . . . . . . . . . . . . . 80<br/>Bibliography . . . . . . . . . . . . . . . . . . . .
520 3# - Abstract
Abstract Abstract:<br/>Technology scaling has been the key enabler for the reduction of the area and power<br/>of a chip over the past decades. However, layout structures are becoming tinier, and<br/>hence more undesired physical effects occur. One of these undesired effects is the<br/>increasing influence of interconnects. In the past, the performance, area and power<br/>of a chip were dominated by transistors. Nevertheless, in Deep Deep Sub-Micron<br/>(DDSM), i.e. 28 nm and below, this is no longer the case. Due to the ever increasing<br/>dominance of interconnects on performance; the traditional standard-cell design flow<br/>is not efficient, especially when the design is data-path intensive. Full-custom design<br/>can cope with the fore mentioned interconnects issues, but the high design time is<br/>hardly affordable. A feasible compromise is a semi-custom design.<br/>A novel semi-custom design flow is proposed targeting designs which are datapath<br/>intensive. It requires good knowledge of the architecture and only focuses on<br/>the critical interconnect-dominated data-path components in the processor platform.<br/>In this flow, the cells are placed manually to achieve high regularity in the data-path.<br/>Based on the architecture and the data flow, the cells are placed in rows and columns<br/>regularly abutted to each other. The data flow is going horizontally and the control<br/>is going vertically. The goal is to optimize the most active wires to get shorter wires<br/>which in turn will lead to lower RC and hence lower delays for high performance.<br/>Moreover, reducing the wires’ lengths will reduce the number of buffers needed and<br/>the switching capacitance. As a result, lower power consumption is obtained.<br/>In the scope of this thesis, a semi-custom design flow is proposed in order to tackle<br/>the influence of wires on the design’s power and delay in DDSM technologies. The flow<br/>exploits Structure Data Path (SDP) to place the cells in rows and columns. Moreover,<br/>the cells’ order within the same row leverages on an adopted linear ordering algorithm<br/>in order to reduce the wires’ length and congestion. In order to test the proposed<br/>flow, a gate-level implementation to one of the state-of-the-art processors proposed<br/>by IMEC is performed. Finally, the results are compared to the conventional design<br/>flow. The results, which are based on the 65 nm low power TSMC technology, have<br/>shown a good potential to reduce wires’ length and congestion and hence reduce the<br/>power consumed in charging and discharging the wires. The proposed flow achieves<br/>17.48 % reduction in number of vias and 13.22 % reduction in total wire length and<br/>a reduction of 25 % in the switching power and 10 % in the total power.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject MSD
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School MSD
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 317
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 317
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 02/15/2021   621/A.M.N 2012 02/15/2021 02/15/2021 Thesis