MARC details
| 000 -LEADER |
| fixed length control field |
05457nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
210125b2018 a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
658 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Doaa Wael Ahmed Abdelrahman |
| 245 1# - TITLE STATEMENT |
| Title |
Malicious VBScript Detection and Classification |
| Statement of responsibility, etc. |
Doaa Wael Ahmed Abdelrahman |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2018 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
96 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| Materials specified |
Supervisor: Nashwa Abd El-Baki |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2018 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>Abstract .................................................................................................... v<br/>Acknowledgments.................................................................................. vii<br/>List of Publications ................................................................................. xi<br/>List of Figures ....................................................................................... xiii<br/>List of Tables ......................................................................................... xv<br/>List of Acronyms ................................................................................. xvii<br/>Malicious VBScript ................................................................................. 1<br/>1.1 Motivation ................................................................................. 1<br/>1.2 Thesis Contributions ................................................................. 2<br/>1.3 Outline of The Thesis ................................................................ 3<br/>Computer Security and Malware Analysis .............................................. 5<br/>1.4 Computer Security..................................................................... 5<br/>2.2 Malware ..................................................................................... 7<br/>2.2.1 Historic View .......................................................................... 7<br/>2.2.2 Malware Types................................................................... 8<br/>2.3 Script Based Malware ............................................................. 10<br/>2.4 VBScript .................................................................................. 11<br/>Literature Review................................................................................... 15<br/>3.1.1 Static Analysis ................................................................. 16<br/>3.1.2 Dynamic Analysis ............................................................ 16<br/>3.1.3 Hybrid Analysis ............................................................... 17<br/>3.2 Malware Detection Techniques ............................................... 17<br/>Malicious VBScript Detection Algorithm Based on Data-Mining Techniques ............................................................................................. 33<br/>4.3 Performance Evaluation ............................................................... 45<br/>4.4 Proposed System Improvements .................................................. 46<br/>46. 4.5 Conclusions ....................................................................... 49<br/>Results .................................................................................................... 51<br/>Conclusions ........................ |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>Malware attacks are amongst the most common security threats. Every day, malware samples are rapidly increasing. Not only malware incidents are fast increasing, but also, the attack methodologies are getting more sophisticated. Alongside to that, malware writers always change and develop their codes, platforms, and, evasion techniques. Nowadays, script-based malwares start to be used in a wide range of malware attacks.<br/>Script-based malware has been used profusely in last years. It provides malware writers with traditional capabilities of file-based malware. Moreover, it increases the evasion techniques by deploying different easy methods of script obfuscation techniques. Furthermore, according to McAfee Labs Threat Report, Script-based malwares were used to hit healthcare sector in 2017. Healthcare accounted for more than 26 % of the 52 million new cyber incidents in the second quarter of 2017. Thus, malware analysis and detection techniques must be developed quickly in order to provide consistent and contented life services. The process of malware analysis can be broken down into static, dynamic, and hybrid analysis.<br/>The aim of this thesis is:<br/>• To focus on script-based malware, especially malicious VBScript.<br/>• To use static malware analysis in order to find discriminative features that classify malicious VBScript.<br/>• To propose a new approach which accurately classifies malicious VBScript based on data mining techniques.<br/>vi<br/>In this thesis, a new algorithm is proposed to improve the detection ratio of malicious VBScript files and to decrease the false positive results.<br/>The proposed algorithm is used to detect malicious scripts specifically for VBScript files. It is based on machine learning techniques and static analysis of the defined features. Experimental results show that the suggested algorithm can achieve 98% detection ratio. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English. |
| 650 #4 - Subject |
| Subject |
Information Security |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
Information Security |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
294 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
294 |