Security Evaluation for Lightweight CAN Authentication Protocol / (Record no. 8848)

MARC details
000 -LEADER
fixed length control field 09840nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210117b2018 |||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Pakinam Noureldeen
245 1# - TITLE STATEMENT
Title Security Evaluation for Lightweight CAN Authentication Protocol /
Statement of responsibility, etc. Pakinam Noureldeen
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2018
300 ## - PHYSICAL DESCRIPTION
Extent 89 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mahmoud Allam, Marianne Azer
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2018 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Chapter 1 Introduction ................................ ................................ ........................... 1<br/>1.2 Scope ................................ ................................ ................................ .................... 3<br/>1.3 Objectives ................................ ................................ ................................ ............ 3<br/>1.4 Limitations ................................ ................................ ................................ ........... 3<br/>1.5 Methodology ................................ ................................ ................................ ........ 3<br/>1.6 Thesis Structure ................................ ................................ ................................ ... 4<br/>Chapter 2 Automotive Internal Networks ................................ ............................. 5<br/>2.1 Types of Automotive Internal Networks ................................ ............................. 5<br/>2.2 Types of ECUs and their Applications ................................ ................................ 8<br/>2.3 Controller Area Network (CAN) in details ................................ ........................ 10<br/>2.3.1 CAN History ................................ ................................ ................................ ................... 10<br/>2.3.2 Communication structure of CAN Bus ................................ ................................ ........... 10<br/>2.3.3 CAN in the OSI Layers ................................ ................................ ................................ ... 11<br/>2.5 CAN Features and Benefits ................................ ................................ ............... 14<br/>2.6 In-Vehicle Interfaces ................................ ................................ .......................... 17<br/>2.7 Security Concerns ................................ ................................ .............................. 18<br/>2.7.1 Security Assets ................................ ................................ ................................ ................ 19<br/>2.7.2 Automotive Network challenges ................................ ................................ ..................... 19<br/>2.8 Automobiles incidents classification ................................ ................................ . 22<br/>2.8.1 Logical attack scenarios ................................ ................................ ................................ .. 22<br/>2.8.2 Possible Examined Attacks ................................ ................................ ............................. 29<br/>Chapter 3 Related work ................................ ................................ ........................ 33<br/>3.1 EVITA project ................................ ................................ ................................ ... 33<br/>3.1.1 Committed security module ................................ ................................ ............................ 34<br/>3.1.2 Key distribution protocol over CAN ................................ ................................ ............... 34<br/>3.1.3 EVITA conclusion ................................ ................................ ................................ ........... 34<br/>3.2 Message/frame authentication protocol ................................ ............................. 35<br/>3.3 Multi-MAC Per receiver ................................ ................................ .................... 38<br/>3.4 Tesla security protocol and its evaluation ................................ .......................... 38<br/>Chapter 4 ................................ ................................ ................................ ................ 40<br/>Light Weight CAN Authentication Protocol ................................ ....................... 40<br/>4.1 Threat Model and Security Requirements ................................ ......................... 40<br/>4.2 The CAN Authentication Protocol................................ ................................ ..... 41<br/>4.3 Protocol Details ................................ ................................ ................................ .. 42<br/>4.4 Protocol Phases ................................ ................................ ................................ .. 43<br/>4.5. Cryptography ................................ ................................ ................................ .... 47<br/>4.6 Disadvantage of LCAP ................................ ................................ ...................... 47<br/>Chapter 5 LCAP Security Evaluation ................................ ................................ . 49<br/>5.1 CANoe Simulation Setup ................................ ................................ ................... 49<br/>5.2 Overview of a CANoe Application ................................ ................................ ... 50<br/>5.3 LCAP Penetration Testing ................................ ................................ ................. 54<br/>5.3.1 Attacks on CAN bus related to CIA ................................ ................................ ................ 54<br/>5.4 LCAP deployment over the CANoe ................................ ................................ .. 58<br/>5.4.1 Attacks after implementing LCAP ................................ ................................ .................. 61<br/>5.4 Successful critical attack over LCAP ................................ ................................ 63<br/>5.4.1 Replay Attack scenario: ................................ ................................ ................................ .. 64<br/>5.4.2 Attack implementation in CANoe tool ................................ ................................ ............ 66<br/>5.4.2.1 Proposed replays attack simulation setup ................................ ................................ ..... 67<br/>5.5 Proposed Solution for Replay attack over LCAP ................................ .............. 70<br/>5.5.1 Control messages re-formatting: ................................ ................................ ..................... 70<br/>5.5.2 Node History configuration ................................ ................................ ............................. 70<br/>5.5.3 Receiver Challenge-Response procedure ................................ ................................ ........ 71<br/>Chapter 6 Conclusion and Future Work ................................ ............................. 74<br/>6.1 Conclusion ................................ ................................ ................................ ......... 74<br/>6.2 Future work ................................ ................................ ................................ ........ 75<br/>References ................................
520 3# - Abstract
Abstract Abstract:<br/>Nowadays, leading automotive companies are trying to push the market towards customer satisfaction and to control their industry remotely. This approach helps automotive companies solve some of the software bugs as soon as the happen, also it helps in updating or adding new software features without requiring the customer to go to the car service station to receive the new software updates or the newly added feature. This approach offers several advantages to both the manufacturing companies and the customer.<br/>Remote diagnosis and firmware updated over the air (FOTA) is the solution that automotive companies found to decrease software bugs, to update and to add new features in order to decrease the number of customer visits to car service stations.<br/>As a result, the security of automotive applications using Controller Area Network (CAN) has become one of the most important concerns for maintaining safety and quality of the driving experience.<br/>In order to practice (FOTA) approach, we need to take into consideration the security of the vehicle networks. To use this approach, we must connect automotive networks to external networksthus exposing them to severe and dangerous cyber crimes and attacks.<br/>Vehicles have different types of networks, each network controls a different mechanism of the vehicle. Automotive networks are (MOST), (CAN), (LIN), and (FlexRay). Several ECUs are connected to each network and work differently. For example, LIN (Local Interconnected Network) is responsible for windows opening and closing, it also controls the door locking mechanism. CAN (Controller Area Network) is used in serious automotive functions such as engine control. For multimedia the MOST (Media Oriented System Transport) is typically used. FlexRay is fault-tolerant and high-speed bus system used in High-Performance Powertrain Safety (Drive-by-wire, active suspension, adaptive cruise control)<br/>The purpose of this thesis is to improve the CAN resistance against attacks. Also, the thesis focuses on the lightweight CAN authentication protocol, examines the protocol immunity against denial of service attacks, and suggests a solution for such attacks. Consequently, a security protocol that is appropriate for all security characteristics is accomplished.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Information Security
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Information Security
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 294
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 294
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 01/17/2021   658 / P.N.S / 2018 01/17/2021 01/17/2021 Thesis