Dynamic Bayesian Networks For Eeg Motor Imagery Feature Extraction / (Record no. 8844)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 10998nam a22002417a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 210112b2018 a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | EG-CaNU |
| Transcribing agency | EG-CaNU |
| 041 0# - Language Code | |
| Language code of text | eng |
| Language code of abstract | eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 610 |
| 100 0# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Basem El Asioty |
| 245 1# - TITLE STATEMENT | |
| Title | Dynamic Bayesian Networks For Eeg Motor Imagery Feature Extraction / |
| Statement of responsibility, etc. | Basem El Asioty |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 111 p. |
| Other physical details | ill. |
| Dimensions | 21 cm. |
| 500 ## - GENERAL NOTE | |
| Materials specified | Supervisor: Seif Eldawlatly |
| 502 ## - Dissertation Note | |
| Dissertation type | Thesis (M.A.)—Nile University, Egypt, 2018 . |
| 504 ## - Bibliography | |
| Bibliography | "Includes bibliographical references" |
| 505 0# - Contents | |
| Formatted contents note | Contents:<br/>Chapter 1 - INTRODUCTION ............................................................................1<br/>1.1 Overview ......................................................................................................... 1<br/>1.2 Objectives ........................................................................................................ 2<br/>1.3 Contributions ................................................................................................... 2<br/>1.4 Thesis Organization .......................................................................................... 3<br/>Chapter 2 - BRAIN-COMPUTER INTERFACE ......................................................5<br/>2.1 Introduction .................................................................................................... 5<br/>2.2 BCI Measurement Techniques .......................................................................... 6<br/>2.3 Electroencephalography (EEG) .......................................................................... 8<br/>2.4 EEG Rhythms ................................................................................................. 10<br/>2.4.1 Delta Rhythms .................................................................................................. 10<br/>2.4.2 Theta Rhythms ................................................................................................. 11<br/>2.4.3 Alpha Rhythms ................................................................................................. 11<br/>2.4.4 Mu Rhythms ..................................................................................................... 11<br/>2.4.5 Beta Rhythms ................................................................................................... 11<br/>2.4.6 Gamma Rhythms ............................................................................................. 11<br/>2.5 EEG Control Signals used for BCI ..................................................................... 12<br/>2.5.1 P300 Signal....................................................................................................... 12<br/>2.5.2 Sensorimotor Rhythms ..................................................................................... 13<br/>2.5.3 Visual Evoked Potential (VEP) .......................................................................... 14<br/>2.6 EEG Processing Techniques for BCI ................................................................. 15<br/>2.6.1 Preprocessing ................................................................................................... 15<br/>2.6.2 Feature Extraction ............................................................................................ 19<br/>2.6.3 Classification .................................................................................................... 23<br/>2.7 BCI Applications ............................................................................................. 24<br/>2.8 Summary ....................................................................................................... 28<br/>Chapter 3 - BRAIN CONNECTIVITY ANALYSIS ................................................. 29<br/>3.1 Introduction .................................................................................................. 29<br/>3.2 The Concept of Brain Connectivity .................................................................. 29<br/>3.3 Connectivity Analysis Methods ....................................................................... 32<br/>3.3.1 Functional Connectivity Methods .................................................................... 32<br/>3.3.2 Effective Connectivity Methods ....................................................................... 35<br/>3.4 Connectivity Features for BCI Applications ...................................................... 38<br/>3.5 Summary ....................................................................................................... 40<br/>Chapter 4 - DYNAMIC BAYESIAN NETWORKS FOR BRAIN CONNECTIVITY ....... 41<br/>4.1 Introduction .................................................................................................. 41<br/>viii<br/>4.2 Bayesian Network Principles .......................................................................... 41<br/>4.3 Learning ........................................................................................................ 44<br/>4.3.1 Network Structure Learning ............................................................................. 44<br/>4.3.2 Parameter Learning ......................................................................................... 46<br/>4.4 Inference with Bayesian Network ................................................................... 47<br/>4.5 Dynamic Bayesian Network (DBN) .................................................................. 47<br/>4.6 DBN for Brain Connectivity ............................................................................. 49<br/>4.7 Summary ....................................................................................................... 51<br/>Chapter 5 - EXPERIMENTAL METHODS .......................................................... 52<br/>5.1 Introduction .................................................................................................. 52<br/>5.2 Dataset: BCI Competition 2008 – Graz Dataset A (BCIIV2a) .............................. 53<br/>5.3 Experimental Setup ........................................................................................ 53<br/>5.4 Data Recording .............................................................................................. 54<br/>5.5 Building the Training Data .............................................................................. 55<br/>5.6 Preprocessing ................................................................................................ 56<br/>5.6.1 Spatial Filtering ................................................................................................ 56<br/>5.6.2 Frequency Band Filtering ................................................................................. 56<br/>5.6.3 Discretization ................................................................................................... 57<br/>5.7 Building Dynamic Bayesian Network............................................................... 58<br/>5.8 Banjo Toolbox ................................................................................................ 60<br/>5.9 Input Data ..................................................................................................... 60<br/>5.10 Banjo Experimental Setup ............................................................................ 61<br/>5.11 Output Data (matrix, graph) ......................................................................... 62<br/>5.12 Dimensionality Reduction ............................................................................ 62<br/>5.13 Combining with Band Power Features .......................................................... 63<br/>5.14 SVM Classifier .............................................................................................. 63<br/>5.15 Granger Causality Connectivity and DBN Connectivity Comparison ................ 64<br/>5.16 Summary ..................................................................................................... 65<br/>Chapter 6 - RESULTS ...................................................................................... 66<br/>6.1 Introduction .................................................................................................. 66<br/>6.2 Frequency Band for Connectivity Features ...................................................... 66<br/>6.3 Connectivity Networks ................................................................................... 68<br/>6.4 Combining Band Power and Connectivity Features ......................................... 69<br/>6.5 Granger Causality Connectivity and DBN Connectivity Comparison .................. 73<br/>6.6 DBN Connectivity Analysis Discussion ............................................................. 75<br/>6.7 Summary ....................................................................................................... 76<br/>Chapter 7 - CONCLUSION AND FUTURE WORK .............................................. 77<br/>7.1 Summary and Contributions ........................................................................... 77<br/>7.2 Future Work .................................................................................................. 78<br/>PUBLICATION ................................................................................................. 80<br/>REFERENCES ....................... |
| 520 3# - Abstract | |
| Abstract | Abstract:<br/>Brain-Computer Interface (BCI) is a system that establishes a communication channel to enable the use of brain activity to interface and control computer systems. One of the most challenging applications of BCI is to identify movement direction from electroencephalography (EEG) data by developing models that discriminate between different motor imagery tasks such right hand movement versus left hand movement. Herein, we utilize graph-based tools to enhance the performance of motor imagery BCIs. Specifically, we introduce the use of Dynamic Bayesian Networks (DBNs) as efficient graphical tool that could be used to detect causal relationships among EEG electrodes during motor imagery tasks. We inferred the causal relationships between EEG electrodes during each of right and left hands imagery movements from 9 different subjects. We demonstrate how using the inferred connectivity as a feature enhances the discrimination among right and left hands imagery movements compared to using traditional band power features. Our analysis reveals a distinctive connectivity pattern manifested by an increase in the number of incoming connections to the right hemisphere motor area compared to the left hemisphere during right hand imagery movements. This pattern is reversed during left hand imagery movements. We demonstrate also using other connectivity features such as Granger Causality connectivity features for the same classification problem. Our results demonstrate how DBN connectivity features give better classification accuracy compared to Granger Causality. |
| 546 ## - Language Note | |
| Language Note | Text in English, abstracts in English . |
| 650 #4 - Subject | |
| Subject | Informatics-IFM |
| 655 #7 - Index Term-Genre/Form | |
| Source of term | NULIB |
| focus term | Dissertation, Academic |
| 690 ## - Subject | |
| School | Informatics-IFM |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | Thesis |
| 650 #4 - Subject | |
| -- | 266 |
| 655 #7 - Index Term-Genre/Form | |
| -- | 187 |
| 690 ## - Subject | |
| -- | 266 |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Not For Loan | Main library | Main library | 01/12/2021 | 610 / B.E.D / 2018 | 01/12/2021 | 01/12/2021 | Thesis |