Segmentation of Cardiac Delayed Enhancement Magnetic Resonance Images / (Record no. 8825)

MARC details
000 -LEADER
fixed length control field 09919nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210112b2010 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mostafa Ahmed Ibrahim AlAttar
245 1# - TITLE STATEMENT
Title Segmentation of Cardiac Delayed Enhancement Magnetic Resonance Images /
Statement of responsibility, etc. Mostafa Ahmed Ibrahim AlAttar
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2010
300 ## - PHYSICAL DESCRIPTION
Extent 130 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Nael Osman
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2010 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>INTRODUCTION .............................................................................................................. 1<br/>1.1. Motivation ...................................................................................................... 1<br/>1.2. Problem Statement ......................................................................................... 4<br/>1.3. Thesis Objective ............................................................................................. 4<br/>1.4. Thesis Overview ............................................................................................. 5<br/>BACKGROUND ................................................................................................................ 5<br/>2.1. Physiology Review ......................................................................................... 5<br/>2.1.1. Heart Anatomy ........................................................................................ 5<br/>2.1.2. Physiological Measurements .................................................................. 7<br/>2.2. MRI concepts and data material ..................................................................... 8<br/>2.2.1. History of MRI ........................................................................................ 8<br/>2.2.3. Cardiac MRI.......................................................................................... 20<br/>2.2.4. Cardiac MRI Imaging Methods: ........................................................... 21<br/>RELATED WORK ........................................................................................................... 26<br/>3.1. Thresholding ................................................................................................. 26<br/>3.2. Region Growing ........................................................................................... 28<br/>3.3. Classifiers ..................................................................................................... 30<br/>3.4. Clustering ..................................................................................................... 33<br/>3.5. Graph-based segmentation ........................................................................... 35<br/>3.6. Active contour models ACMs ...................................................................... 35<br/>3.7. Active shape models ASMs ......................................................................... 36<br/>3.8. Active appearance models AAMs ................................................................ 37<br/>3.9. Level-set segmentation ................................................................................. 37<br/>CINE BRIGHT BLOOD IMAGES SEGMENTATION METHODS.............................. 38<br/>4.1. Multi Seeded Region Growing (Experiment 1) ........................................... 38<br/>4.1.1. Standard region growing algorithm (RG) ............................................. 38<br/>4.1.2. Limitations of region growing .............................................................. 39<br/>4.1.3. Multi-Seeded Region Growing (MSRG) .............................................. 40<br/>xvi<br/>4.1.4. Morphological Operations .................................................................... 44<br/>4.1.5. Epicardial Control Points ...................................................................... 48<br/>4.1.6. Refinement of the Contours using ACMs ............................................. 51<br/>4.1.7. Proposed Algorithm .............................................................................. 54<br/>4.2. Adaptive Multi Seeded Region Growing (Experiment 2) ............................ 55<br/>4.2.1. Multi-Seeded Region Growing ............................................................. 55<br/>4.2.2. Seed Points and Constraining Areas Selection ..................................... 55<br/>4.2.3. K-Means ................................................................................................ 55<br/>4.2.4. Proposed Algorithm .............................................................................. 57<br/>4.3. Automatic Evaluation Methods .................................................................... 58<br/>4.3.1. Average perpendicular distance ............................................................ 58<br/>4.3.2. Dice metric ............................................................................................ 60<br/>4.3.3. Accuracy Measurements ....................................................................... 61<br/>4.3.4. Visual (Manual) Evaluation Method .................................................... 61<br/>4.3.5. Another Parameters that’s taken into account ...................................... 61<br/>CINE BLACK BLOOD IMAGES CLASSIFICATION .................................................. 62<br/>5.1. Modified STEAM for Black Blood Imaging ............................................... 62<br/>5.2. Stochastic Model .......................................................................................... 63<br/>5.3. Classification Techniques ............................................................................ 65<br/>5.3.1. Bayesian Classifier................................................................................ 65<br/>5.3.2. Linear Classifier L1-Norm .................................................................... 65<br/>5.3.3. Quadratic Classifier L2-Norm ............................................................... 66<br/>5.3.4. Rectangular Classifier Linf-Norm .......................................................... 67<br/>5.4. Numerical Simulation .................................................................................. 67<br/>5.4.1. Case1: Background Signal .................................................................... 68<br/>5.4.2. Case2: Tissue Signal ............................................................................. 69<br/>5.5. Real Images Test .......................................................................................... 70<br/>5.6. Further Processing ........................................................................................ 72<br/>5.7. Performance Evaluation Methods ................................................................ 74<br/>CINE BRIGHT BLOOD SEGMENTATION RESULTS & DISCUSSION ................... 75<br/>6.1. Multi Seeded Region Growing (Experiment 1) Results............................... 75<br/>6.1.1. Simple Region Growing ....................................................................... 76<br/>6.1.2. Multi Seeded Region Growing constrained by Overlapped Sectors .... 77<br/>xvii<br/>6.1.3. Evaluation of the MSRG Coefficients .................................................. 77<br/>6.1.4. Resulted Contour Refinement using ACM and CPR ............................ 80<br/>6.1.5. Final Results.......................................................................................... 80<br/>6.2. Adaptive Multi Seeded Region Growing (Experiment 2) Results ............... 85<br/>6.2.1. Selecting the sectors sizes and positions using k-means ...................... 85<br/>6.2.2. Quantitative Analysis ............................................................................ 86<br/>6.2.3. Final Results: ........................................................................................ 87<br/>CINE BLACK BLOOD CLASSIFICATION RESULTS & DISCUSSION ................... 92<br/>7.1. Simulated Data Results ................................................................................ 92<br/>7.2. Real Images Results ..................................................................................... 95<br/>CONCLUSION ............................................................................................................... 101<br/>8.1. Future Work ............................................................................................... 103<br/>REFERENCES ...............................................................................................................
520 3# - Abstract
Abstract Abstract:<br/>Imaging the heart using Cine Bright Blood MRI and Cine Black-blood MRI<br/>sequences is very important to evaluate the cardiac global and regional function. In<br/>the first type of imaging which is Cine Bright Blood MRI, Manual segmentation of<br/>the contours in all images through different slices is a cumbersome task. Therefore,<br/>methods were proposed to automatically or semi-automatically analyze and segment<br/>the contours from short-axis images and derive useful clinical information from them<br/>is highly desirable. In this thesis, we have proposed two algorithms to segment LV<br/>and they are Multi-Seeded Region Growing (MSRG) and adaptive MSRG. Their<br/>performance has been evaluated also in this thesis. The second type of images which<br/>is Cine Black Blood images suffers from the low signal-to-noise ratio SNR in<br/>general. In this thesis, a probabilistic model of blood and tissue signals is developed<br/>and used to build a Bayesian decision function to identify and filter the noise from the<br/>background signal. Numerical simulation and real MRI images were used to test and<br/>validate the proposed method. Also, the proposed method is compared to other<br/>conventional techniques.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification   Not For Loan Main library Main library 01/12/2021   610/ MA.S 2010 01/12/2021 01/12/2021 Thesis