Scale Adaptive Object Tracking With Diverse Ensemble / (Record no. 8810)
[ view plain ]
| 000 -LEADER | |
|---|---|
| fixed length control field | 07773nam a22002537a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
| fixed length control field | 210112b2015 a|||f mb|| 00| 0 eng d |
| 040 ## - CATALOGING SOURCE | |
| Original cataloging agency | EG-CaNU |
| Transcribing agency | EG-CaNU |
| 041 0# - Language Code | |
| Language code of text | eng |
| Language code of abstract | eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
| Classification number | 610 |
| 100 0# - MAIN ENTRY--PERSONAL NAME | |
| Personal name | Sara Maher El-Kerdawy |
| 245 1# - TITLE STATEMENT | |
| Title | Scale Adaptive Object Tracking With Diverse Ensemble / |
| Statement of responsibility, etc. | Sara Maher El-Kerdawy |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
| Date of publication, distribution, etc. | 2015 |
| 300 ## - PHYSICAL DESCRIPTION | |
| Extent | 100 p. |
| Other physical details | ill. |
| Dimensions | 21 cm. |
| 500 ## - GENERAL NOTE | |
| Materials specified | Supervisor: Mohamed A. El-Helw |
| 502 ## - Dissertation Note | |
| Dissertation type | Thesis (M.A.)—Nile University, Egypt, 2015 . |
| 504 ## - Bibliography | |
| Bibliography | "Includes bibliographical references" |
| 505 0# - Contents | |
| Formatted contents note | Contents:<br/>Chapter 1: Introduction ................................................................................................. 11<br/>1.1. Overview and Motivation .................................................................................... 11<br/>1.2. Contributions........................................................................................................ 14<br/>1.2.1. Multiple Classifier System (Diverse Ensemble) ....................................... 15<br/>1.2.2. Scale Estimation........................................................................................ 15<br/>1.2.3. Multiple Vehicle Detection and Tracking for Traffic Monitoring ............ 16<br/>1.3. Publications .......................................................................................................... 17<br/>1.4. Organization of Thesis ......................................................................................... 17<br/>Chapter 2: State of the Art ............................................................................................ 19<br/>2.1. Overview of Visual Object Tracking Process ...................................................... 20<br/>2.1.1. Initialization .............................................................................................. 20<br/>2.1.2. Appearance Modeling ............................................................................... 22<br/>2.2. Conclusion ........................................................................................................... 31<br/>Chapter 3: Background ................................................................................................. 33<br/>3.1. Dimensionality Reduction ................................................................................... 33<br/>3.1.1. Principal Component Analysais ................................................................ 35<br/>3.1.2. Random Projections .................................................................................. 38<br/>3.2. Multiple Classifier Systems ................................................................................. 41<br/>3.3. Conclusion ........................................................................................................... 44<br/>Chapter 4: An Integrated Framework for Visual Object Tracking ............................... 45<br/>4.1. Introduction .......................................................................................................... 45<br/>vi<br/>4.2. Compressed Features ........................................................................................... 48<br/>4.2.1. Filter Banks ............................................................................................... 48<br/>4.2.2. Measurement Matrix Construction ........................................................... 48<br/>4.3. Model Construction ............................................................................................. 49<br/>4.3.1. Base Classifiers ......................................................................................... 50<br/>4.3.2. Two-Step Detection .................................................................................. 53<br/>4.3.3. Diverse Ensembles .................................................................................... 54<br/>4.4. Conclusions .......................................................................................................... 58<br/>Chapter 5: Results & Discussion .................................................................................. 61<br/>5.1. Datasets ................................................................................................................ 61<br/>5.2. Evaluation metric ................................................................................................. 62<br/>5.3. Quantitative Analysis ........................................................................................... 62<br/>5.3.1. Experimental setup.................................................................................... 62<br/>5.3.2. Ensemble Evaluation ................................................................................ 63<br/>5.3.3. Scale Adaptability Evaluation ................................................................... 67<br/>5.4. Qualitative Analysis ............................................................................................. 67<br/>5.5. Summary .............................................................................................................. 69<br/>Chapter 6: Case Study: Integrated Framework for Traffic Monitoring ........................ 72<br/>6.1. Framework architecture ....................................................................................... 72<br/>6.2. Vehicle Detection ................................................................................................. 74<br/>6.3. Vehicle Tracking .................................................................................................. 77<br/>6.3.1. Tracklet Management ............................................................................... 78<br/>6.4. Data Association .................................................................................................. 79<br/>6.5. System Evaluation ............................................................................................... 81<br/>6.6. Conclusion ........................................................................................................... 82<br/>Chapter 7: Conclusions and future work ...................................................................... 87<br/>7.1. Summary of contributions.................................................................................... 87<br/>7.2. Future Work ......................................................................................................... 88<br/>References ......................................................................................................................... |
| 520 3# - Abstract | |
| Abstract | Abstract:<br/>unrestricted environment. Even thought VOT problem is well explored in the<br/>computer vision literature, VOT remains challenging and there are lots of<br/>compromises yet to take such as robustness and time performance, adaptability and<br/>drifting. Object tracking is a crucial problem for many applications such as traffic<br/>monitoring in which we will illustrate our tracking algorithm on. Our objective of this<br/>thesis is to develop a scale and appearance adaptive object tracking algorithm using<br/>statistical machine learning techniques that also performs in real-time applications.<br/>We begin by addressing the object tracking problem by exploring two complementary<br/>components. First we explore learning appearance model using a diverse ensemble of<br/>random projections and benefiting from their sparisty yet robustness. Second we<br/>address object scaling problem to alleviate the problems introduced when the object’s<br/>size changes that differ ranging from avoiding false positive learning to updating the<br/>model with the new object appearance. |
| 546 ## - Language Note | |
| Language Note | Text in English, abstracts in English. |
| 650 #4 - Subject | |
| Subject | Informatics-IFM |
| 655 #7 - Index Term-Genre/Form | |
| Source of term | NULIB |
| focus term | Dissertation, Academic |
| 690 ## - Subject | |
| School | Informatics-IFM |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
| Source of classification or shelving scheme | Dewey Decimal Classification |
| Koha item type | Thesis |
| 650 #4 - Subject | |
| -- | 266 |
| 655 #7 - Index Term-Genre/Form | |
| -- | 187 |
| 690 ## - Subject | |
| -- | 266 |
| Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Total Checkouts | Full call number | Date last seen | Price effective from | Koha item type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dewey Decimal Classification | Not For Loan | Main library | Main library | 01/12/2021 | 610/ SE.S 2015 | 01/12/2021 | 01/12/2021 | Thesis |