Human Action Recognition in Videos Employing 2-DPCA on 2DHHOF and Radon Transform / (Record no. 8807)

MARC details
000 -LEADER
fixed length control field 06738nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210112b2013 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Fadwa Fawzy Fouad
245 1# - TITLE STATEMENT
Title Human Action Recognition in Videos Employing 2-DPCA on 2DHHOF and Radon Transform /
Statement of responsibility, etc. Fadwa Fawzy Fouad
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2013
300 ## - PHYSICAL DESCRIPTION
Extent 90 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed A. El-Helw
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2013.
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>\1 Introduction 1<br/>1.1 Challenges and characteristics of the domain . . . . . . . . . . . . . . . . . . 2<br/>1.1.1 inter- and Intra-class variations . . . . . . . . . . . . . . . . . . . . . 2<br/>1.1.2 Environmental Variations and Capturing conditions . . . . . . . . . . 2<br/>1.1.3 Temporal variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2 Overview 5<br/>2.1 Input videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2.2 Human detection/segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2.2.1 Background subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.2.2 Optical Flow (OF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.2.3 Histogram of Oriented Gradients (HOG) . . . . . . . . . . . . . . . . 10<br/>2.3 Feature Extraction and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.3.1 Non-Parametric Approaches . . . . . . . . . . . . . . . . . . . . . . . 11<br/>2.3.2 Volumetric Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br/>2.3.3 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.4 Action Classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.4.1 Direct classication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.4.2 Temporal state-space models . . . . . . . . . . . . . . . . . . . . . . . 16<br/>3 2DHOOF/2DPCA Contour Based Optical Flow Algorithm 18<br/>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>vi<br/>3.2 What 2DHOOF Features are . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>3.2.1 Optical Flow Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>3.2.2 Alignment issues with OF . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>3.2.3 The Calculation of 2D Histogram of Optical Flow(2DHOOF) . . . . . 23<br/>3.3 Overall System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>3.3.1 Training Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>3.3.2 Testing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>3.4 Used Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>3.4.1 Weizmann Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>3.4.2 IXMAS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>3.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 35<br/>3.5.1 Weizmann Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>3.5.2 IXMAS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>4 Human Gesture Recognition Employing Radon Transform/2DPCA 48<br/>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>4.2 Radon Transform (RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>4.3 Overall System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>4.3.1 Training Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>4.3.2 Testing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>4.4 Used Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.4.1 ChaLearn Gesture Data . . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>4.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 55<br/>4.5.1 Input videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>4.5.2 Segmentation and Blob extraction . . . . . . . . . . . . . . . . . . . . 55<br/>4.5.3 Alignment using RT of the First Frame . . . . . . . . . . . . . . . . . 60<br/>4.5.4 Video Chopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br/>4.5.5 Calculate the MEI and MHI . . . . . . . . . . . . . . . . . . . . . . . 66<br/>4.5.6 Get Radon Transform for MEI and MHI . . . . . . . . . . . . . . . . 68<br/>4.5.7 2DPCA and Feature Extraction . . . . . . . . . . . . . . . . . . . . . 69<br/>vii<br/>5 Conclusion 73<br/>5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br/>5.2 Future Work . .
520 3# - Abstract
Abstract Abstract:<br/>Human action recognition is a very important trend of research with a great interest in<br/>computer vision area. It has applications in various elds such as surveillance, content-based<br/>video retrieval, gesture recognition and sports analysis. The speed, storage requirements,<br/>and accuracy of the human action recognition system are highly dependent on the extracted<br/>features, and modeling approaches. All dierent recognition techniques aim to extract the<br/>most representative and accurate features with low storage requirements. In this thesis, two<br/>algorithms are proposed for human action recognition which target the high accuracy and<br/>the low computation complexity.<br/>For the rst algorithm the novel Two Dimensions Histogram of Oriented Optical <br/>ow<br/>(2DHOOF) features where extracted using the actor's contour. Two Dimensions Principal<br/>Component Analysis (2DPCA) was used for feature extraction. The Euclidean Distance<br/>Classier was used for the nal classication decision. Experimental results applied on<br/>Weizmann and the IXMAS datasets achieved the highest reported recognition accuracy and<br/>the fastest runtime compared to recent methods.<br/>In the second algorithm Radon Transform (RT) was extracted from the moving parts of<br/>the actor. Using RT enables us to easily align the actor's silhouette with the center of the<br/>frame without the need of further pre-processing. 2DPCA was used for feature extraction.<br/>The Euclidean Distance Classier was used for the nal classication decision. Experimental<br/>results applied on one shot learning ChaLearn Gesture Data-set achieved high recognition<br/>accuracy and the fast runtime.<br/>Experimental results promote our algorithms for real time applications.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification   Not For Loan Main library Main library 01/12/2021   610/ FF.H 2013 01/12/2021 01/12/2021 Thesis