Fusion of Motion History of Skeletal Volumes and Temporal Bounding Volumes for View-Invariant Human Action Recognition / (Record no. 8806)

MARC details
000 -LEADER
fixed length control field 08232nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210112b2013 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name abubakrelsedik alsebai karali
245 1# - TITLE STATEMENT
Title Fusion of Motion History of Skeletal Volumes and Temporal Bounding Volumes for View-Invariant Human Action Recognition /
Statement of responsibility, etc. abubakrelsedik alsebai karali
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2013
300 ## - PHYSICAL DESCRIPTION
Extent 71 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed A. El-Helw
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2013 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Chapter 1 Introduction ............................................................................................................... 10<br/>1.1 Introduction and Problem Statement ............................................................................ 10<br/>1.2 Objectives and Approach .............................................................................................. 11<br/>1.3 Dissertation Overview .................................................................................................. 11<br/>1.4 Publications and Awards............................................................................................... 12<br/>1.5 Conclusion ................................................................................................................... 12<br/>Chapter 2 Background ............................................................................................................... 13<br/>2.1 Human Action Recognition .......................................................................................... 13<br/>2.2 Human Action Recognition System Block Diagram .................................................... 14<br/>2.3 Related Work ................................................................................................................ 16<br/>2.3.1 Work Utilizes 3D Data.............................................................................................. 16<br/>2.4 3d Shape Features ......................................................................................................... 18<br/>2.5 Skeletons and Skeletonization ...................................................................................... 20<br/>2.6 Skeleton Properties ....................................................................................................... 21<br/>2.6.1 Blum Skeleton Properties ......................................................................................... 21<br/>2.6.2 Curve Skeleton Properties......................................................................................... 25<br/>2.7 Pattern Recognition ....................................................................................................... 27<br/>2<br/>2.7.1 Naïve Bayesian ......................................................................................................... 28<br/>2.7.2 K-Star ........................................................................................................................ 28<br/>2.7.3 Multilayer Perceptron ............................................................................................... 29<br/>2.7.4 Logistic Model Trees ................................................................................................ 29<br/>2.7.5 C4.5 Decision Trees .................................................................................................. 30<br/>2.7.6 Multiple Classifier Systems ...................................................................................... 30<br/>2.8 Conclusion .................................................................................................................... 32<br/>Chapter 3 Framework for Activity Classification ..................................................................... 33<br/>3.1 Feature extraction.......................................................................................................... 34<br/>3.1.1 Motion History of Skeletal Volumes for Human Action Recognition ..................... 34<br/>3.1.2 Motion History of Skeletal Volumes (MHSV) ......................................................... 35<br/>3.1.3 Motion Temporal Change in Bounding Volume (TCBV) ........................................ 36<br/>3.1.4 Temporal Changes in Bounding Volumes (TCBVS) ............................................... 39<br/>3.2 Processing And Classification ...................................................................................... 40<br/>3.2.1 Motion History Of Skeletal Volumes Classification ................................................ 40<br/>3.2.2 Temporal Changes in Bounding Volumes Classification ......................................... 42<br/>3.2.3 MHSV And TCBV Decision Fusion Using Multiple Classifier Systems ................ 42<br/>3.3 Conclusion .................................................................................................................... 43<br/>Chapter 4 Experiments and Evaluation ..................................................................................... 45<br/>4.1 Datasets ......................................................................................................................... 45<br/>4.1.1 The IXMAS Dataset ................................................................................................. 45<br/>4.1.2 The I3DPOST Dataset .............................................................................................. 47<br/>4.2 Motion History of Skeletal Volume Results ................................................................. 47<br/>3<br/>4.3 Temporal Changes in Bounding Volumes Results ....................................................... 52<br/>4.4 Fusion ............................................................................................................................ 54<br/>4.5 Conclusion .................................................................................................................... 57<br/>Chapter 5 Conclusion and Future work .....................................................................................
520 3# - Abstract
Abstract Abstract:<br/>Human Activity Recognition is an active area of research in computer vision with wide range of<br/>applications in video surveillance, motion analysis, virtual reality interfaces, robot navigation<br/>and recognition, video indexing, browsing, HCI, choreography, ports video analysis, to name a<br/>few. It consists of analyzing the characteristic features of various human actions and classifying<br/>them. A human activity recognition system typically consists of the following stages:<br/>background subtraction, tracking, feature extraction and classification.<br/>Several approaches have been developed to solve this problem in 2D and 3D spaces. Due<br/>to the enhanced robustness of 3D vision-based recognition techniques, we focus in this thesis on<br/>human action recognition from 3D data. We present a framework for reliable action recognition<br/>systems designed to achieve the objective of automatic classification of ongoing activities in<br/>unlabeled 3D sequences. The major challenges within this framework are the extraction of<br/>representative motion descriptors and the usage of suitable classification methods to build a<br/>model for each motion. to this end, the thesis introduces a novel view-invariant features (a) the<br/>motion history of skeletal volumes and (b) the temporal change in bounding volumes, where<br/>both are used to describe specific actions. Furthermore, we propose a number of classification<br/>techniques for action recognition as well as decision fusion rules to combine decisions when the<br/>human action recognition system deals with multiple features using state-of-art multiple<br/>classifier systems. Obtained results demonstrate that skeletons produce better results than<br/>volumes and that the use of bounding volumes along with the skeletons further improves the<br/>recognition accuracy and can hence be used to recognize human actions independent of<br/>viewpoint and scale.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification   Not For Loan Main library Main library 01/12/2021   610 / AK.F 2013 01/12/2021 01/12/2021 Thesis