Body and Visual Sensor Fusion for GAIT Impairment Analysis in Ubiquitous Healthcare Systems (Record no. 8802)

MARC details
000 -LEADER
fixed length control field 09195nam a22002537a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210112b2011 a|||f mb|| 00| 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mohamed Elsayed AbdelRaouf Elsayed
245 1# - TITLE STATEMENT
Title Body and Visual Sensor Fusion for GAIT Impairment Analysis in Ubiquitous Healthcare Systems
Statement of responsibility, etc. Mohamed Elsayed AbdelRaouf Elsayed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2011
300 ## - PHYSICAL DESCRIPTION
Extent 122 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Mohamed A. El-Helw
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2011 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>CHAPTER ONE ............................................................................................................... 19<br/>1. INTRODUCTION..................................................................................................... 19<br/>1.1. Introduction .................................................................................................. 19<br/>1.2. Challenges ..................................................................................................... 22<br/>1.3. Thesis Contribution ....................................................................................... 23<br/>CHAPTER TWO .............................................................................................................. 26<br/>2. PERVASIVE HEALTHCARE MONITORING ................................................................ 26<br/>2.1. Introduction .................................................................................................. 26<br/>2.2. Ubiquitous Monitoring Technologies ............................................................. 27<br/>2.2.1. Body Sensor Networks ........................................................................... 27<br/>2.2.2. Visual Sensor Networks ......................................................................... 30<br/>2.3. Sensor Design and Hardware Architectures ................................................... 33<br/>2.3.1. BSN Design Goals ................................................................................... 33<br/>2.3.2. BSNs Hardware Architecture .................................................................. 35<br/>2.3.3. VSNs Design Goals ................................................................................. 38<br/>2.3.4. VSNs Hardware Architecture.................................................................. 38<br/>2.4. Motion Analysis Applications ......................................................................... 41<br/>2.5. Conclusions ................................................................................................... 44<br/>CHAPTER THREE ........................................................................................................... 45<br/>3. BODY AND VISUAL MOTION FEATURES EXTRACTION AND FUSION ........................ 45<br/>3.1. Introduction ..................................................................................................<br/>3.2. Body Motion Feature Computation ............................................................... 45<br/>3.3. Visual Feature Extraction ............................................................................... 49<br/>3.3.1. Visual Data Enhancement ............................................................................ 49<br/>Background Modeling and Foreground Detection................................... 49<br/>Shadow Detection and Removal ............................................................. 53<br/>3.3.2. Blob Skeletonization .................................................................................... 56<br/>Moore Neighborhood algorithm ............................................................. 57<br/>3.3.3. Visual Metrics .............................................................................................. 60<br/>3.4. Data Fusion ................................................................................................... 64<br/>3.5. Conclusions ................................................................................................... 67<br/>CHAPTER FOUR ............................................................................................................. 68<br/>4. GAIT IMPAIRMENT CLASSIFICATION AND ANALYSIS .............................................. 68<br/>4.1. Introduction .................................................................................................. 68<br/>4.2. Classification Techniques ............................................................................... 68<br/>4.2.1. Multilayer Perceptron ................................................................................. 68<br/>4.2.2. Naïve Bayes Classifier .................................................................................. 71<br/>4.2.3. K-Nearest Neighbor ..................................................................................... 73<br/>4.2.4. Decision Tree............................................................................................... 75<br/>4.3. Change Analysis Technique............................................................................ 76<br/>4.4. Conclusion ..................................................................................................... 79<br/>CHAPTER FIVE ............................................................................................................... 80<br/>5. EXPERIMENTS AND RESULTS ................................................................................. 80<br/>5.1. Introduction .................................................................................................. 80<br/>5.2. Sensors Placement and Installation ............................................................... 81<br/>5.2.1. BSN Sensor Placement and Orientation ....................................................... 81<br/>5.2.2. VSN Nodes Deployment .............................................................................. 82<br/>5.3. Dataset Collection ......................................................................................... 85<br/>5.4. Cross-Validation Experiment.......................................................................... 87<br/>5.5. Gait Classification Experiment ....................................................................... 91<br/>5.4.1. Multiple Layer Preceptron ...........................................................................<br/>5.4.2. Naïve Bayes Classifier .................................................................................. 92<br/>5.4.3. K-Nearest Neighbors ................................................................................... 93<br/>5.4.4. Decision Tree............................................................................................... 95<br/>5.4.5. Error Percentage ......................................................................................... 96<br/>5.6. Gait Impairment Quantification using Change Analysis Technique ................. 97<br/>5.7. Conclusion ................................................................................................... 101<br/>CHAPTER SIX ............................................................................................................... 102<br/>6. CONCLUSIONS AND FUTURE WORK ....................................................................
520 3# - Abstract
Abstract Abstract:<br/>Human motion analysis provides a valuable solution for monitoring the<br/>wellbeing of the elderly, quantifying post-operative patient recovery and monitoring<br/>the progression of neurodegenerative diseases such as Parkinson’s. The<br/>development of accurate motion analysis models, however, requires the integration<br/>of multi-sensing modalities and the utilization of appropriate data analysis<br/>techniques. This work describes a robust framework that is monitor and quantifies<br/>the patients’ gait impairment by integrating information captured by two different<br/>sensing modalities which are body and visual sensor networks. Real-time target<br/>extraction is applied and a skeletonization procedure is subsequently carried out to<br/>quantify the internal motion of moving target and computes two metrics,<br/>spatiotemporal cyclic motion between leg segments and head trajectory, for each<br/>vision node. Extracted motion metrics from multiple vision nodes and accelerometer<br/>information from a wearable body sensor are then fused at the feature level. Then<br/>the combined features used to classify target’s walking gait as being normal or<br/>abnormal (limping) by using Cross-Validation and several classification techniques<br/>such as Multiple Layer Preceptron, Naïve Bayes Classifier, K-Nearest Neighbors,<br/>and Decision Tree. Furthermore the proposed framework is capable of measuring<br/>gait impairment and recovery of postoperative patients in smart healthcare<br/>environments by using Change Analysis algorithm. The potential value of the<br/>proposed framework for patient monitoring is demonstrated and the results obtained<br/>from practical experiments are described.
546 ## - Language Note
Language Note Text in English, abstracts in English.
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification   Not For Loan Main library Main library 01/12/2021   610/ ME.B 2011 01/12/2021 01/12/2021 Thesis