A Framework for Effective AI Integration in Higher Education: (Record no. 11032)

MARC details
000 -LEADER
fixed length control field 12547nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2025 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 000
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 658.4
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Laura Labib
245 1# - TITLE STATEMENT
Title A Framework for Effective AI Integration in Higher Education:
Remainder of title A Case Study of Nile University
Statement of responsibility, etc. /Laura Labib
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent 127 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Prof. Dr. Alaaeldin Idris<br/>Dr. Elhassan El Sabry
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2025 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Table of Contents<br/>Certificate of Approval.....................................................................................................ii<br/>Copyright.........................................................................................................................iii<br/>Dedication & Acknowledgement ....................................................................................iv<br/>Declaration ....................................................................................................................... v<br/>Abstract ...........................................................................................................................vi<br/>List of Abbreviations........................................................................................................ x<br/>List of Figures .................................................................................................................xi<br/>List of Tables..................................................................................................................xii<br/>Chapter 1: Introduction .................................................................................................... 1<br/>1.1 Dynamics and debates regarding the integration of Artificial Intelligence ............ 1<br/>1.2 Navigating the landscape of AI in higher education ......................................... 3<br/>Chapter 2: Literature Review ........................................................................................... 7<br/>1.1 Defining AI: Historical and foundational perspectives.......................................... 7<br/>2.2 Categories of AI: Narrow AI, AGI, and ASI................................................... 10<br/>2.3 Core technologies in today’s AI ........................................................................... 10<br/>2.4 AI governance and ethical considerations............................................................ 13<br/>2.4.1 The EU AI Act ............................................................................................... 14<br/>2.5 AI use cases in higher education .......................................................................... 15<br/>2.5.1 Curriculum design and content development (the WHAT)........................... 18<br/>2.5.2 Pedagogical strategies and learning environment (the HOW)....................... 21<br/>2.5.3 Evaluating mechanisms.................................................................................. 29<br/>2.5.4 Streamlining processes, and enhancing efficiency ........................................ 31<br/>2.5.5 Learning analytics.......................................................................................... 31<br/>2.5.6 Academic research and ideation .................................................................... 33<br/>2.5.7 Student support and services.......................................................................... 34<br/>2.6 The psychology of technology adoption............................................................... 35<br/>viii<br/>2.7 Research gap......................................................................................................... 43<br/>2.8 Problem statement ................................................................................................ 43<br/>2.9 Research questions................................................................................................ 44<br/>2.10 Research aim & objectives ................................................................................. 44<br/>2.11 Research significance ......................................................................................... 45<br/>Chapter 3: Research Methodology................................................................................. 46<br/>3.1 Research design ............................................................................................... 46<br/>3.2 Case study selection......................................................................................... 48<br/>3.3 Participants ...................................................................................................... 49<br/>3.4 Data collection instrument............................................................................... 49<br/>3.4.1 Quantitative data collection instrument.................................................... 49<br/>3.4.2 Qualitative data collection instrument...................................................... 49<br/>3.5 Data analysis plan ............................................................................................ 50<br/>3.5.1 Hypotheses development ............................................................................... 50<br/>3.5.2 Quantitative analysis ................................................................................ 53<br/>3.5.3 Qualitative analysis .................................................................................. 54<br/>3.6 Procedure ......................................................................................................... 54<br/>3.7 Validity and reliability..................................................................................... 54<br/>3.8 Ethical considerations...................................................................................... 55<br/>3.9 Limitations....................................................................................................... 55<br/>Chapter 4: Results and Discussion ................................................................................. 56<br/>4.1. Demographic overview of survey respondents................................................ 56<br/>4.2. Faculty AI usage .............................................................................................. 58<br/>4.3. Perceived student AI usage.............................................................................. 60<br/>4.4. Hypotheses testing faculty and perceived student AI usage............................ 64<br/>4.4.1 Analysis by Role ...................................................................................... 64<br/>4.4.2 Analysis by School Affiliation ................................................................. 65<br/>ix<br/>4.4.3 Analysis by Familiarity with AI............................................................... 67<br/>4.4.4 Analysis by Belief in AI’s potential......................................................... 68<br/>4.4.5 Analysis by Comfort with AI technology ................................................ 70<br/>4.4.6 Analysis by Training in AI tools.............................................................. 72<br/>4.5. Identifying significant influences on faculty AI usage: a multiple regression analysis<br/>74<br/>4.6. Disconnect between perception and practice................................................... 77<br/>4.7. Synthesis of quantitative and qualitative findings........................................... 80<br/>4.7.1 Quantitative findings summary ................................................................ 80<br/>4.7.2 Qualitative themes from interviews ......................................................... 81<br/>4.7.3 Institutional support as a barrier to faculty AI usage: evidence from quantitative and <br/>qualitative data ........................................................................................................ 83<br/>4.8 Addressing the research questions................................................................... 83<br/>Chapter 5: Conclusions and Recommendations............................................................. 86<br/>5.1 Summary of key findings...................................................................................... 86<br/>5.2 Recommendations............................................................................................ 87<br/>5.2.1 Linking findings to research objectives: a proposed framework for AI integration<br/>................................................................................................................................. 93<br/>5.3 Future research...................................................................................................... 95<br/>5.4 Strategic outlook and reflection............................................................................ 96<br/>References.................................................................................................................... 100<br/>Appendix: Exploring the potential of Artificial Intelligence (AI) in Higher Education_ A survey <br/>for Nile University teachers and staff.pdf ................<br/>
520 3# - Abstract
Abstract Abstract:<br/>Artificial intelligence (AI) is revolutionizing education by serving as a transformative foundation <br/>for innovation across key domains: curriculum design and content development, pedagogical <br/>strategies and learning environments, evaluation mechanisms and feedback systems, process <br/>streamlining and efficiency enhancement, learning analytics, academic research and ideation, and <br/>student support and services.<br/>This thesis investigates how to adopt and integrate AI effectively in higher education, taken Nile <br/>University as a case study. It seeks the factors influencing faculty adoption. It implements, as a<br/>theoretical framework; the Theory of Planned Behavior (TPB), a widely recognized framework <br/>in technology adoption studies. The thesis addresses three key research questions. Namely, the <br/>faculty attitudes toward AI integration in their teaching and learning practices, how do subjective <br/>norms, such as social influence and social norms, affect faculty AI adoption; and the factors <br/>contribute to perceived behavioral control over AI usage. To address these questions, the research <br/>is guided by three primary objectives: to assess how faculty members use AI tools and perceive <br/>students' use of AI; to examine and analyze the influence of role, school affiliation, familiarity <br/>with AI, belief in its potential, comfort with AI technology, and impact of training on AI adoption; <br/>and to identify barriers and supports for AI integration into teaching and learning practices. <br/>A mixed-methods approach was used, combining faculty surveys for quantitative data analyzed <br/>using ANOVA and multiple regression with SPSS v.26, and semi-structured interviews for <br/>qualitative insights analyzed through thematic techniques.<br/>The findings reveal that faculty generally hold positive attitudes toward AI, particularly its <br/>potential to enhance academic tasks like research, proofreading, and content analysis. However, <br/>AI integration into teaching remains limited due to insufficient training and lack of institutional <br/>guidelines. While faculty view students' AI usage positively, this has little impact on their own <br/>adoption behaviors, with the absence of institutional norms being a more significant barrier. <br/>Training emerged as the key factor in driving perceived behavioral control. Moreover, welltrained faculty reported greater comfort and willingness to adopt AI. Faculty role and school <br/>affiliation showed no significant impact on adoption rates. <br/>Building on these insights, the research concludes with proposing a framework for effective AI <br/>integration in higher education. Institutions should prioritize leadership and governance, such as <br/>appointing an AI officer and establishing an AI committee. Alongside, developing <br/>comprehensive strategies, policies, and targeted training programs, ensuring academic integrity <br/>and ethical use is a fundamental pillar of the proposed framework for responsible AI adoption in <br/>higher education.<br/>Keywords: Artificial Intelligence (AI), Higher Education, Framework for AI Integration, <br/>Theory of Planned Behavior, AI In Teaching and Learning, Educational Technology<br/>
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject MOT
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School MOT
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 309
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 309
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 10/11/2025   658.4/ L.L.F/2025 10/11/2025 10/11/2025 Thesis