Automated Code Assessment: (Record no. 11029)

MARC details
000 -LEADER
fixed length control field 06952nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2025 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0009-0000-0316-2724
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Mina Atef Yousef Wahba
245 1# - TITLE STATEMENT
Title Automated Code Assessment:
Remainder of title From Dataset Construction To Distributed LLM-Powered Grading
Statement of responsibility, etc. /Mina Atef Yousef Wahba
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent 93 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Ghada Khoriba<br/>Tamer Arafa<br/>
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2025 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Contents<br/>LIST OF FIGURES xi<br/>LIST OF TABLES xi<br/>1 Introduction 1<br/>1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1.1 Evolution of Educational Technology . . . . . . . . . . . . . . . . . . 2<br/>1.1.2 Limitations of Traditional Grading in Programming . . . . . . . . . . . 3<br/>1.1.3 Emergence and Potential of LLMs and Big Data . . . . . . . . . . . . 4<br/>1.2 Research Contributions and Significance . . . . . . . . . . . . . . . . . . . . . 5<br/>1.2.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>1.2.2 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br/>2 Literature Review 7<br/>2.1 Background and Taxonomy of LLMs . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1.1 General Purpose LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1.2 Domain Specific LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>2.1.3 MoE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.2 LLMs in Education Applications . . . . . . . . . . . . . . . . . . . . . . . . . 10<br/>2.3 LLM in Grading and Feedback Systems . . . . . . . . . . . . . . . . . . . . . 13<br/>2.4 Infrastructure for Scalable LLM Deployment . . . . . . . . . . . . . . . . . . 15<br/>2.5 Identified Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>vii<br/>CONTENTS<br/>3 Methodology 19<br/>3.1 Dataset Collection and Pre-processing . . . . . . . . . . . . . . . . . . . . . . 19<br/>3.1.1 Real-Time Data Processing . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>3.1.2 Data Augmentation and Annotation . . . . . . . . . . . . . . . . . . . 23<br/>3.1.3 Annotation of Real Campus Data . . . . . . . . . . . . . . . . . . . . 23<br/>3.1.4 Synthetic Data Generation from Programming Books . . . . . . . . . . 25<br/>3.2 BeGrading: Fine-Tuned Model for Automated Programming Grading . . . . . 26<br/>4 Results & Discussion 28<br/>4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>4.1.1 Hardware Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>4.1.2 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br/>4.1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br/>4.1.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>4.2 Dataset Analysis and Characteristics . . . . . . . . . . . . . . . . . . . . . . . 33<br/>4.2.1 Real-Time Processing Performance . . . . . . . . . . . . . . . . . . . 33<br/>4.2.2 Dataset Augmentation and Annotation . . . . . . . . . . . . . . . . . 36<br/>4.3 Begrading: Fine-tuned Model Results . . . . . . . . . . . . . . . . . . . . . . 44<br/>4.3.1 Effect of Dataset Grade Correction on High-Variance Records . . . . . 45<br/>4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>4.4.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>4.4.2 Sensitivity to Grading Guidance . . . . . . . . . . . . . . . . . . . . . 49<br/>4.4.3 Effectiveness of Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . 50<br/>4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>5 Conclusions and Future Work 56<br/>5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br/>A Appendix 73
520 3# - Abstract
Abstract Abstract:<br/>rading programming assignments in educational settings presents several challenges, including computational resource constraints, inconsistent evaluation criteria, subjectivity, and delayed feedback delivery, all of which can hinder student learning progress. Although large<br/>language models (LLMs) demonstrate promising capabilities for automated code evaluation,<br/>existing approaches face limitations in scalability, processing efficiency, and deployment feasibility in resource-constrained educational environments. This research presents a comprehensive solution that addresses these challenges through an integrated architecture that combines<br/>real student-annotated data, synthetic data generation, specialized model fine-tuning, and a distributed computing infrastructure.<br/>We develop a framework for creating high-quality training datasets through both authentic student submissions and a synthetic data generation architecture that produces realistic programming assignments and student responses, while addressing concerns regarding privacy and data<br/>insufficiency. Based on this enhanced dataset, we fine-tune BeGrading, a specialized LLM optimized for comprehensive code evaluation across multiple dimensions, including correctness,<br/>efficiency, and coding style. BeGrading achieves superior performance with an absolute difference rate of 19% (± 0.95 of 5) compared to the Codestral-22B model of reference, demonstrating effective optimization for educational settings.<br/>To overcome computational limitations, we implement a scalable, distributed infrastructure that<br/>utilizes Apache Spark Streaming with GPU-accelerated worker nodes, enabling the real-time<br/>processing of high-volume grading tasks. Our experimental evaluation demonstrates significant<br/>performance improvements, with inference time reductions of up to 50% using dual workers<br/>and 70-80% with three workers, while maintaining grading accuracy. The system includes<br/>robust failover mechanisms that ensure continuous operation and a reliable distribution of tasks<br/>between nodes. This work presents a practical and scalable solution for automated programming<br/>assessment that significantly reduces instructor workload while providing students with timely,<br/>consistent, and objective feedback. This approach ultimately enhances educational outcomes by<br/>improving efficiency and reliability in code evaluation processes.<br/>Keywords<br/>Large language model, grade, spark, cluster, programming education, synthetic data generation,<br/>fine-tuning architecture
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject InformaticsIFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School InformaticsIFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 10/11/2025   610/M.W.A/2025 10/11/2025 10/11/2025 Thesis