Balancing Performance and Explainability in Deep Learning for Lung Disease Detection Using Unimodal and Multimodal Approaches (Record no. 11026)

MARC details
000 -LEADER
fixed length control field 08060nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2025 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0009-0005-8406-6000
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ghadir Moemen Helmy Ali
245 1# - TITLE STATEMENT
Title Balancing Performance and Explainability in Deep Learning for Lung Disease Detection Using Unimodal and Multimodal Approaches
Statement of responsibility, etc. /Ghadir Moemen Helmy Ali
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent 214 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Dr. Mustafa Elattar<br/>
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2025 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Contents<br/>Page<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii<br/>Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii<br/>List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix<br/>Chapters:<br/>1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 5<br/>1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.1 Inherent Deep Learning Trade-offs . . . . . . . . . . . . . . . 7<br/>2.2 Explainable AI and Clinical Applicability . . . . . . . . . . . 9<br/>2.3 Lung Diseases Clinical Background . . . . . . . . . . . . . . . 15<br/>2.3.1 Non-Small Cell Lung Carcinoma (NSCLC) . . . . . . . 16<br/>2.3.2 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>3. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>3.1 Explainable AI and Clinical Reasoning . . . . . . . . . . . . . 22<br/>3.1.1 Explainable AI Approaches . . . . . . . . . . . . . . . 25<br/>3.1.2 Evaluation of Explainable AI Methods . . . . . . . . . 34<br/>3.1.3 Limitations and Future Directions . . . . . . . . . . . 42<br/>xi<br/>3.2 Attention Mechanisms in Deep Learning . . . . . . . . . . . . 44<br/>3.2.1 Main Approaches . . . . . . . . . . . . . . . . . . . . . 49<br/>3.2.2 Attention for Explainable AI . . . . . . . . . . . . . . 61<br/>3.3 Pneumonia Classification from Chest X-Ray . . . . . . . . . . 66<br/>3.4 Non-Small Cell Lung Carcinoma . . . . . . . . . . . . . . . . 70<br/>3.4.1 Data Types . . . . . . . . . . . . . . . . . . . . . . . . 73<br/>3.4.2 AI Contribution . . . . . . . . . . . . . . . . . . . . . 83<br/>3.5 Literature Survey Summary . . . . . . . . . . . . . . . . . . . 102<br/>4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br/>4.1 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br/>4.1.1 Dataset and Preprocessing . . . . . . . . . . . . . . . . 107<br/>4.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br/>4.2 Non-Small Cell Lung Carcinoma . . . . . . . . . . . . . . . . 113<br/>4.2.1 Dataset Description and Inclusion Criteria . . . . . . . 114<br/>4.2.2 Preprocessing and Featurization . . . . . . . . . . . . . 116<br/>4.2.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 121<br/>5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br/>5.1 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br/>5.2 Non-Small Cell Lung Carcinoma . . . . . . . . . . . . . . . . 136<br/>5.2.1 Molecular Features & Model . . . . . . . . . . . . . . . 136<br/>5.2.2 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br/>6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br/>6.1 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br/>6.2 Non-Small Cell Carcinoma . . . . . . . . . . . . . . . . . . . . 145<br/>7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br/>7.1 Key Findings and Contributions . . . . . . . . . . . . . . . . 147<br/>7.1.1 Pneumonia Classification with Attention Mechanisms . 147<br/>7.1.2 Non-Small Cell Carcinoma Metastasis Detection using<br/>Radiogenomics . . . . . . . . . . . . . . . . . . . . . . 148<br/>7.1.3 Explainability and Clinical Usability . . . . . . . . . . 148<br/>7.2 Implications for AI in Healthcare . . . . . . . . . . . . . . . . 149<br/>7.3 Limitations and Future Directions . . . . . . . . . . . . . . . 149<br/>7.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br/>8. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br/>8.1 Multi-Modal Imaging Expansion . . . . . . . . . . . . . . . . 151<br/>8.2 Advanced Multi-Information Fusion Strategies . . . . . . . . . 152<br/>8.3 Dataset Development and Clinical Validation . . . . . . . . . 152<br/>xii<br/>8.4 Toward Human-Centric Explainable AI . . . . . . . . . . . . . 153<br/>Appendices:<br/>A. Publications and Competitions . . . . . . . . . . . . . . . . . . . . 155<br/>Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br/>Arabic Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
520 3# - Abstract
Abstract Abstract:<br/>The adoption of deep learning in healthcare applications has highlighted a<br/>critical trade-off between model performance and explainability, particularly in<br/>clinical decision-making contexts. This thesis explores methods to address this<br/>trade-off through two key studies focusing on lung disease detection: pneumonia<br/>classification using chest X-rays and metastatic classification for non-small-cell<br/>lung cancer using CT imaging and genomics.<br/>In our work with pneumonia, attention mechanisms were integrated into<br/>DL models, serving as a balance between post-hoc and inherently explainable<br/>approaches. The use of attention improved classification performance while<br/>enhancing model focus on clinically relevant regions, as demonstrated through<br/>Grad-CAM visualizations. Attention proved to be an effective explainability<br/>choice when chest X-ray was the sole data source.<br/>For the non-small-cell lung cancer study, we adopted a multimodal approach<br/>combining CT imaging and RNA-sequencing data. Ablation studies revealed<br/>a novel clinical insight: surrounding tissue regions were more predictive of<br/>metastasis than tumor regions, aligning with Grad-CAM visualizations that<br/>emphasized tissue edges. This finding correlates with medical knowledge where<br/>tissue involvement signals metastasis progression. Genomic features alone<br/>exhibited limited predictive power but improved model performance when fused<br/>with imaging data. In contrast, handcrafted features, such as shape and size<br/>metrics, showed poor predictive capability. Given access to multimodal data,<br/>vii<br/>this study opens the door for exploring more clinically meaningful explainability<br/>techniques to further align AI model outputs with clinical reasoning.<br/>These results underscore the importance of context-specific explainability<br/>approaches in healthcare AI. While attention mechanisms are effective for<br/>unimodal data like chest X-ray, complex tasks with rich multimodal inputs,<br/>such as non-small-cell lung cancer classification, can benefit from advanced<br/>explainability methods. This thesis contributes to developing clinically explainable AI systems that strike a balance between performance and interpretability,<br/>ensuring their utility in real-world medical applications.<br/>Keywords<br/>Deep Learning, Convolutional Neural Networks, Attention Mechanisms, Explainable Artificial Intelligence, Lung Diseases, Medical Imagining, Bioinformatics,<br/>Radiogenomics, Clinical Applicability
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject InformaticsIFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School InformaticsIFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 10/08/2025   610/G.A.B/2025 10/08/2025 10/08/2025 Thesis