Multi-Domain Aspect-Based Sentiment Analysis Using Transformer-Based Models On Arabic Corpus (Record no. 11014)

MARC details
000 -LEADER
fixed length control field 06322nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2025 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0001-7713-9682
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Yomna Eid Mohamed Rizk
245 1# - TITLE STATEMENT
Title Multi-Domain Aspect-Based Sentiment Analysis Using Transformer-Based Models On Arabic Corpus
Statement of responsibility, etc. /Yomna Eid Mohamed Rizk
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2025
300 ## - PHYSICAL DESCRIPTION
Extent p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Walaa Medhat
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2025 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Contents<br/>Page<br/>CERTIFICATION OF APPROVAL ii<br/>COPYRIGHT iii<br/>ACKNOWLEDGEMENTS iv<br/>ABSTRACT v<br/>Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi<br/>LIST OF FIGURES xi<br/>LIST OF TABLES xii<br/>LIST OF EQUATIONS xiii<br/>Chapters:<br/>1. Introduction 1<br/>1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>2. Background and Concepts 5<br/>2.1 Sentiment Analysis (SA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2.2 Aspect-Based Sentiment Analysis (ABSA) Task . . . . . . . . . . . . . . . . . . . . . 6<br/>2.2.1 ABSA in the Arabic Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>vii<br/>2.2.2 Models for ABSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>2.3 Multi-domain ABSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>3. Background and Literature Review 15<br/>3.1 Existing ABSA Models in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br/>3.2 Arabic Single-Domain ABSA Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>3.3 Arabic Single-Domain ABSA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br/>3.4 Multi-domain ABSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br/>3.4.1 Methodologies of Multi-Domain ABSA . . . . . . . . . . . . . . . . . . . . . . 23<br/>3.4.2 Models for Multi-Domain ABSA . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>4. Multi-Domain Aspect-Based Sentiment Analysis Proposed Model 26<br/>4.1 A-MASA: Arabic Multi-Domain Aspect-Based Sentiment Analysis Datasets . . . . . . 27<br/>4.1.1 Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>4.1.2 Dataset Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>4.1.3 Dataset Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>4.1.4 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>4.2 ABSA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>5. Experimental Evaluation 40<br/>5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br/>5.2 A-MASA Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>5.3 Muli-Domain ABSA Models Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br/>5.3.1 Muli-Domain Aspects Extraction Results . . . . . . . . . . . . . . . . . . . . . 45<br/>5.3.2 Muli-Domain Aspects Sentiment Classification Results . . . . . . . . . . . . . 48<br/>5.4 Other Models Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>5.4.1 Comparison Between Our Model and Arabic Single-domain AE Model . . . . . 49<br/>5.4.2 Comparison Between Multi-domain Arabic ABSA Model and LLMs-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br/>6. Conclusions and Future Work 52<br/>viii<br/>6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>Bibliography 60<br/>Appendices:<br/>A. Publications
520 3# - Abstract
Abstract Abstract:<br/>Aspect-Based Sentiment Analysis (ABSA) is a fine-grained Sentiment Analysis (SA) task that<br/>identifies sentiments expressed towards specific aspects within a sentence. Despite the increasing use<br/>of Semitic languages like Arabic in Natural Language Processing (NLP), there remains a scarcity of<br/>resources and datasets for Arabic ABSA. To address these challenges, we introduce a new manually<br/>annotated multi-domain dataset, A-MASA (Arabic Multi-domain Aspect-based Sentiment Analysis), comprising 6,500 records from different domains and dialects. Additionally, a generalized model<br/>for Arabic multi-domain ABSA was developed and trained on both A-MASA and existing datasets,<br/>covering a total of nine domains. The proposed model integrates three state-of-the-art pre-trained<br/>models, each fine-tuned with additional layers, and combines their outputs using a weighted sum ensemble technique. Comprehensive experiments were conducted to evaluate the model’s performance.<br/>For the Aspect Extraction (AE) task, the QARiB model achieved the highest F1-score of 88.7% on<br/>the hotels domain, while the ensemble model reached the highest F1-score of 88.9% on the products<br/>domain. For aspect sentiment classification, the ensemble model recorded an F1-score of 87.5% on<br/>the hotels domain. The ensemble model demonstrated superior generalization, outperforming existing single-domain models on unseen data, achieving 37% improvement in the books domain and<br/>14% in the hotels domain for the AE task. Additionally, the model surpassed two Large Language<br/>Models (LLMs), achieving an F1-score of 88.9% in the products domain 49% higher than JAIS and<br/>31% higher than Gemini.<br/>keywords<br/>Arabic Aspect-Based Sentiment Analysis (ABSA), Multi-domain Sentiment Analysis, Natural Language Processing (NLP), Ensemble Learning Models, Arabic Datasets.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject InformaticsIFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School InformaticsIFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 03/15/2025   610/Y.R.M/2025 03/15/2025 03/15/2025 Thesis