SECRET IMAGE SHARING APPROACHES USING NUMBER THEORY AND CHAOTIC SYSTEMS (Record no. 10997)

MARC details
000 -LEADER
fixed length control field 07255nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210b2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0003-2997-272X
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Bishoy Kamal Gad Sharobim
245 1# - TITLE STATEMENT
Title SECRET IMAGE SHARING APPROACHES USING NUMBER THEORY AND CHAOTIC SYSTEMS
Statement of responsibility, etc. /Bishoy Kamal Gad Sharobim
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 180p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: Heba Kamal Aslan
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII<br/>List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI<br/>List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII<br/>1. Introduction 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.3 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2. Background and Survey 4<br/>2.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br/>2.2 Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br/>2.2.1 Numerical Solvers Overview . . . . . . . . . . . . . . . . . . . 9<br/>2.2.2 Chaotic Generators Simulation . . . . . . . . . . . . . . . . . 11<br/>2.2.3 PRNGs Results and Tests . . . . . . . . . . . . . . . . . . . . 15<br/>2.2.4 Fractional-Order Rossler System . . . . . . . . . . . . . . . . 19<br/>2.2.5 Generalized Tent Map . . . . . . . . . . . . . . . . . . . . . . 20<br/>2.2.6 Generalized Arnold Transform . . . . . . . . . . . . . . . . . . 27<br/>2.3 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>2.3.1 The Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>2.3.2 Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>2.3.3 Euler’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 39<br/>2.3.4 Cryptographic Applications of Basic Number Theory . . . . . 41<br/>2.4 Secure Hash Algorithm: SHA-256 . . . . . . . . . . . . . . . . . . . . 44<br/>2.5 Secret Sharing Literature . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>2.5.1 VSS Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>2.5.2 SIS Using Polynomial Interpolation . . . . . . . . . . . . . . . 52<br/>2.5.3 XOR-Based MSIS . . . . . . . . . . . . . . . . . . . . . . . . 54<br/>3. Number Theory Based Secret Image Sharing 56<br/>3.1 A (k, n)-Secret Image Sharing With Steganography Using Generalized<br/>Tent Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>3.1.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>3.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 58<br/>3.2 An Efficient Multi-Secret Image Sharing System Based on Chinese<br/>Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br/>3.2.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>3.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 74<br/>IV<br/>3.2.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 80<br/>3.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br/>3.3 A Unified System for Encryption and Multi-Secret Image Sharing Using S-box and CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br/>3.3.1 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . 83<br/>3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 86<br/>4. Chaos Based Secret Image Sharing 97<br/>4.1 Different Designs of Chaos-Based Secret Image Sharing Systems . . . 97<br/>4.1.1 The VSS System . . . . . . . . . . . . . . . . . . . . . . . . . 98<br/>4.1.2 The First SIS System . . . . . . . . . . . . . . . . . . . . . . 100<br/>4.1.3 The Second SIS System . . . . . . . . . . . . . . . . . . . . . 102<br/>4.1.4 Results and Comparisons . . . . . . . . . . . . . . . . . . . . 103<br/>4.2 Multi-Secret Image Sharing Using Fractional-Order Rossler System . 111<br/>4.2.1 Proposed MSIS System . . . . . . . . . . . . . . . . . . . . . 112<br/>4.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 116<br/>4.2.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br/>4.3 Progressive Multi-Secret Sharing of Color Images Using Lorenz Chaotic<br/>System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br/>4.3.1 Proposed MSIS system . . . . . . . . . . . . . . . . . . . . . . 127<br/>4.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 129<br/>4.3.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br/>5. Conclusions and Future Work 141<br/>5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br/>5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br/>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
520 3# - Abstract
Abstract Abstract:<br/>Securing the transmission of secret information is important. When sending a<br/>secret image to mutually suspicious receivers, they must be together to recover the<br/>image. Secret Image Sharing (SIS) provides this feature by sending meaningless shares<br/>to n participants, and k or more shares must be available to recover the secret image, where k ≤ n. Furthermore, Multi-Secret Image Sharing (MSIS) was introduced,<br/>where multiple images are simultaneously shared instead of only one image. This research proposed different, simple, and efficient approaches for SIS and MSIS using the<br/>number theory concepts, such as polynomial interpolation, and Chinese Remainder<br/>Theorem (CRT), and various chaotic systems, such as Lorenz and Rossler systems<br/>as Pseudo-Random Number Generator (PRNG). In this research, several tests have<br/>shown good randomness of the different PRNGs. The proposed approaches worked<br/>on sharing any number or type of images, such as binary, grayscale, and color images, with lossless recovery. Security analysis and comparisons with related literature<br/>were also introduced with good results, including statistical tests such as Root Mean<br/>Square Error (RMSE), correlation, entropy, and the National Institute of Standards<br/>and Technology (NIST) SP-800-22 test suite. In addition, they passed several attacks, such as differential attacks, noise and crop attacks, and other tests, such as<br/>key sensitivity tests and performance analysis, where the systems used long sensitive<br/>system keys.<br/>Keywords: Chaos theory, Number theory, Pseudo-Random Number Generator<br/>(PRNG), Secret Image Sharing (SIS), Visual Secret Sharing (VSS)
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject Informatics-IFM
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School Informatics-IFM
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
650 #4 - Subject
-- 266
655 #7 - Index Term-Genre/Form
-- 187
690 ## - Subject
-- 266
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 12/21/2024   610/B.K.S/2024 12/21/2024 12/21/2024 Thesis