MARC details
| 000 -LEADER |
| fixed length control field |
11120nam a22002657a 4500 |
| 008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
| fixed length control field |
201210b2024 a|||f bm|| 00| 0 eng d |
| 024 7# - Author Identifier |
| Standard number or code |
0000-0002-2242-4598 |
| Source of number or code |
ORCID |
| 040 ## - CATALOGING SOURCE |
| Original cataloging agency |
EG-CaNU |
| Transcribing agency |
EG-CaNU |
| 041 0# - Language Code |
| Language code of text |
eng |
| Language code of abstract |
eng |
| 082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
| Classification number |
621 |
| 100 0# - MAIN ENTRY--PERSONAL NAME |
| Personal name |
Mohammad Atef Ibrahim Mohammad Mansour |
| 245 1# - TITLE STATEMENT |
| Title |
Development of a Fully Integrated Wearable System for Continuous Glucose and Vital Signs Monitoring |
| Statement of responsibility, etc. |
/Mohammad Atef Ibrahim Mohammad Mansour |
| 260 ## - PUBLICATION, DISTRIBUTION, ETC. |
| Date of publication, distribution, etc. |
2024 |
| 300 ## - PHYSICAL DESCRIPTION |
| Extent |
180 p. |
| Other physical details |
ill. |
| Dimensions |
21 cm. |
| 500 ## - GENERAL NOTE |
| Materials specified |
Supervisor: Ahmed Soltan |
| 502 ## - Dissertation Note |
| Dissertation type |
Thesis (M.A.)—Nile University, Egypt, 2024 . |
| 504 ## - Bibliography |
| Bibliography |
"Includes bibliographical references" |
| 505 0# - Contents |
| Formatted contents note |
Contents:<br/>Table of Contents<br/>Page<br/>Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III<br/>List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX<br/>List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X<br/>List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI<br/>List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII<br/>1. Introduction 1<br/>1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br/>1.3 Development and Implementation Roadmap . . . . . . . . . . . . . . . . . . 2<br/>1.4 Contributions Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>2. Wearable Devices for Continuous Glucose Monitoring 5<br/>2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2.2 Wearable biosensors role in bio-molecules sensing . . . . . . . . . . . . . . . 10<br/>2.3 Glucose sensing principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>2.3.1 Classifications of glucose biosensors . . . . . . . . . . . . . . . . . . 13<br/>2.3.2 Interstitial fluid (ISF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>2.3.3 Sweat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>2.3.4 Optical coherent tomography . . . . . . . . . . . . . . . . . . . . . . 20<br/>2.3.5 Bioimpedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br/>2.4 CGM Electronic Components . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>IV<br/>2.4.1 Analog Front End (AFE) . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.4.2 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br/>2.4.3 Energy source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>2.5 Diabetes management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>2.5.1 Challenges of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>2.6 Commercial CGM systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br/>2.7 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br/>2.8 Discussion and future prospective . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>3. Selection of IoT Protocols 45<br/>3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br/>3.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.1.3 Research Gaps and Contributions . . . . . . . . . . . . . . . . . . . . 47<br/>3.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.2 IoT Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>3.2.1 IoT Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>3.2.2 The IoT Functional Building Elements . . . . . . . . . . . . . . . . . 50<br/>3.3 The IoT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.3.1 IoT Stack Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>3.3.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br/>3.3.3 Edge and Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . 53<br/>3.4 IoT Application Layer Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>3.4.1 Message Queue Telemetry Transport (MQTT) . . . . . . . . . . . . . 55<br/>3.4.2 Constrained Application Protocol (CoAP) . . . . . . . . . . . . . . . 55<br/>3.4.3 Advanced Message Queuing Protocol (AMQP) . . . . . . . . . . . . . 56<br/>3.4.4 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br/>3.4.5 Extensible Messaging and Presence Protocol (XMPP) . . . . . . . . . 56<br/>3.5 IoT Communication Technologies . . . . . . . . . . . . . . . . . . . . . . . . 57<br/>3.5.1 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br/>3.5.2 BLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>3.5.3 Z-Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>V<br/>3.5.4 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br/>3.5.5 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>3.5.6 Wi-SUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br/>3.5.7 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br/>3.5.8 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br/>3.5.9 NB-IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br/>3.5.10 Wired Communication Protocols . . . . . . . . . . . . . . . . . . . . 73<br/>3.5.11 Hybrid Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br/>3.6 IoT Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br/>3.7 IoT Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>3.7.1 OpenDSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>3.7.2 NS-2/ NS-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.7.3 OMNET++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.7.4 GridLab-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.7.5 MATLAB/Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.7.6 GloMoSiM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br/>3.8 IoT Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>3.9 IoT Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br/>3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br/>3.11 Low-Power Wireless protocol selection for continous glucose monitoring . . 87<br/>3.11.1 Bluetooth Low Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br/>3.11.2 Near Field Communication . . . . . . . . . . . . . . . . . . . . . . . 89<br/>3.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br/>4. System development and integration 91<br/>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br/>4.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br/>4.2.1 Controller board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br/>4.2.2 Sensor interface circuits . . . . . . . . . . . . . . . . . . . . . . . . . 97<br/>4.3 Microneedle fabrication process . . . . . . . . . . . . . . . . . . . . . . . . . 98<br/>4.4 Embedded software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br/>4.4.1 Micro-needle auto-calibration . . . . . . . . . . . . . . . . . . . . . . 100<br/>4.4.2 Automatic Oxidation Peak Detector . . . . . . . . . . . . . . . . . . . 101<br/>VI<br/>4.4.3 Communications and System operation . . . . . . . . . . . . . . . . 103<br/>4.4.4 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br/>4.4.5 Detection of Hypo/Hyperglycemia . . . . . . . . . . . . . . . . . . . 106<br/>4.4.6 Integration with Mobile Application . . . . . . . . . . . . . . . . . . 107<br/>4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108<br/>4.5.1 In-Vitro Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 108<br/>4.5.2 Readout Circuit Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 109<br/>4.5.3 Chronoamperometric Response Analysis and Calibration Algorithm<br/>for Reduced Operation Time . . . . . . . . . . . . . . . . . . . . . . . 109<br/>4.5.4 System integration and In-vivo testing . . . . . . . . . . . . . . . . . 112<br/>4.5.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br/>4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br/>5. Conclusions and Future Work 119<br/>5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br/>5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br/>Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 |
| 520 3# - Abstract |
| Abstract |
Abstract:<br/>The need for continuous, non-invasive glucose and vital signs monitoring has driven advancements in wearable technology, integrating biosensing, data transmission, and energyefficient designs. This thesis presents a comprehensive development of a fully integrated<br/>wearable system for real-time glucose monitoring. The system employs microneedle technology for highly accurate glucose monitoring and Bluetooth Low Energy for efficient and<br/>continuous data transmission. The glucose sensor, designed with electrochemical properties, facilitates accurate glucose detection through interstitial fluid with minimal invasiveness. Energy management is optimized with effective power reduction strategies, extending<br/>the device’s operational lifespan and supporting prolonged wearability. Furthermore, the<br/>system utilizes a robust communication framework, selecting BLE as an IoT protocol that<br/>supports secure, real-time data transmission to a mobile interface. This connectivity facilitates remote monitoring, data logging, and alerts for hypoglycemia and hyperglycemia,<br/>promoting a user-friendly and patient-centric design. By combining data from multiple vital<br/>signs and applying predictive models, the system enhances precision health management,<br/>allowing for more effective diabetes treatment and monitoring. The thesis highlights the<br/>device’s practicality through comparative analyses, in vitro characterization, and in-vivo<br/>testing, establishing its potential for broader adoption in healthcare.<br/>Keywords: Continuous Glucose Monitoring, Glucose Wearable Sensors, Non-invasive<br/>Glucose Monitoring, Health Monitoring, Precision Medicine. |
| 546 ## - Language Note |
| Language Note |
Text in English, abstracts in English and Arabic |
| 650 #4 - Subject |
| Subject |
MSD |
| 655 #7 - Index Term-Genre/Form |
| Source of term |
NULIB |
| focus term |
Dissertation, Academic |
| 690 ## - Subject |
| School |
MSD |
| 942 ## - ADDED ENTRY ELEMENTS (KOHA) |
| Source of classification or shelving scheme |
Dewey Decimal Classification |
| Koha item type |
Thesis |
| 650 #4 - Subject |
| -- |
317 |
| 655 #7 - Index Term-Genre/Form |
| -- |
187 |
| 690 ## - Subject |
| -- |
317 |