Smart Connectivity for Teleoperated Vehicles Using a Predictive LTE Multi-Operator Approach (Record no. 10898)

MARC details
000 -LEADER
fixed length control field 08375nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210s2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0003-3128-9559
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ahmed Maher Mohamed Hamed
245 1# - TITLE STATEMENT
Title Smart Connectivity for Teleoperated Vehicles Using a Predictive LTE Multi-Operator Approach
Statement of responsibility, etc. /Ahmed Maher Mohamed Hamed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 64p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor:<br/>Nashwa AbdelBaki
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>DEDICATION................................................................................................................i<br/>ACKNOWLEDGEMENTS...........................................................................................ii<br/>TABLE OF CONTENTS..............................................................................................iv<br/>LIST OF FIGURES ......................................................................................................vi<br/>LIST OF TABLES.......................................................................................................vii<br/>ACRONYMS..............................................................................................................viii<br/>PUBLICATIONS..........................................................................................................xi<br/>ABSTRACT................................................................................................................xiii<br/>Chapter 1 Introduction ...................................................................................................1<br/>1.1 Connectivity-Based Services in Business............................................................1<br/>1.2 Teleoperated Services..........................................................................................2<br/>1.3 Automotive Industry Assistive Driving ...............................................................4<br/>1.4 Connectivity Service............................................................................................5<br/>1.5 Connectivity Demand Growth .............................................................................6<br/>1.6 The need behind Multi-Operator Connection ....................................................10<br/>1.7 Thesis Objectives...............................................................................................11<br/>1.8 Thesis Outline ....................................................................................................12<br/>Chapter 2 Related Teleoperating Idea & Prediction Model Data ................................13<br/>2.1 Teleoperative Supporting Devices.....................................................................13<br/>2.2 Teleoperating with Cellular ...............................................................................18<br/>2.3 Prediction Model and Correlation of the Environment Parameters...................21<br/>Chapter 3 Accurate Data Collection for Modeling ......................................................25<br/>3.1 Collecting Equipment ........................................................................................25<br/>3.2 Selected Test Area Criteria ................................................................................25<br/>3.3 Preforming Data Collection ...............................................................................27<br/>Chapter 4 Feature Engineering for Improved Predection ............................................36<br/>4.1 Data Cleansing & Labelling...............................................................................37<br/>4.1.1 Labelling Level 1: Basic Suitability .......................................................................... 37<br/>4.1.2 Labelling Level 2: Prioritization with Weighted Scores .......................................... 37<br/>4.1.3 Tie-Breaking Mechanism ........................................................................................ 38<br/>4.1.4 Addressing Unsuitable Data for Model Training .................................................... 39<br/>4.1.5 Data Features: Building the Model's Foundation................................................... 40<br/>4.2 Predictive Modelling..........................................................................................43<br/>4.2.1 Dividing the Data: Training and Testing Sets.......................................................... 45<br/>4.2.2 Addressing Data Imbalance: Ensuring a Fair Playing Field for Operators .............. 46<br/>4.2.3 Evaluating the Impact of Balanced Data: Confusion Matrix and Optimal Choice.. 48<br/>4.2.4 Best Model Results ................................................................................................. 51<br/>Chapter 5 Conclusion and Future Work ......................................................................55<br/>5.1 Conclusion .........................................................................................................55<br/>5.1.1 Building Upon Existing Work: Comparing Approaches to Throughput Prediction 56<br/>5.1.2 Model Selection and Verification ........................................................................... 56<br/>5.1.3 Success Without Private Data................................................................................. 57<br/>5.1.4 Moving Forward: Beyond Throughput ................................................................... 57<br/>5.1.5 Road Sample Distribution and Localized Impact.................................................... 58<br/>5.1.6 Impact on Model Performance............................................................................... 58<br/>5.2 Future Work .......................................................................................................59<br/>5.2.1 Enhancing Data Streams and Sensor Fusion .......................................................... 59<br/>5.2.2 Investigating More Complex Models: Beyond Simple ANNs.................................. 60<br/>5.2.3 Data Intensity Through Crowd-Sourced Collection................................................ 61
520 3# - Abstract
Abstract Abstract:<br/>The demand for reliable connectivity-driven services is on the rise, leading to <br/>increased sensitivity in technologies like Advanced Driver-Assistance Systems <br/>(ADAS). ADAS represents a prevalent technological advancement in modern <br/>vehicles, with the aspiration of achieving trustworthy autonomous driving as the <br/>ultimate goal. From both end-user and manufacturer perspectives, we are assessing <br/>Teleoperated Driving as a promising feature to address emerging needs for traffic <br/>management and health and safety precautions. Human-to-human interaction and <br/>perception have been found to be superior to human-to-machine interaction in <br/>handling tasks, such as human driving compared to machine driving.<br/>As this entire service relies on sensors which it is already implemented by various <br/>car manufacturers, and connectivity. It is obvious that the quality of the connectivity <br/>is expected to change in terms of coverage and capacity. We studied the feasibility <br/>of predicting the most suitable market operator within a specific area. This is based <br/>on previously established criteria, to serve as the primary data connection before <br/>engaging in a new measurement delay. To this end, an extensive measurement <br/>period was conducted. Establishing error margins in data collection and refining the <br/>data filtering process were meant to accurately capture the specifically targeted road <br/>conditions. These steps were completed prior to the commencement of our analysis <br/>of different models.<br/>Smart Connectivity for Teleoperated <br/>Vehicles Using a Predictive LTE <br/>Multi-Operator Approach<br/>Ahmed Maher Mohamed Hamed<br/>xiv<br/>These efforts have strengthened our study's focus on confirming the feasibility of <br/>seamless transitions between different operators, ensuring the fulfilment of the <br/>necessary teleoperation conditions. <br/>Keywords: Cellular networks, teleoperated vehicle, teleoperated driving, latency, <br/>throughput, 4G, LTE, predication models
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject informatics
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School informatics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/27/2024   610/A.H.S/2024 08/27/2024 08/27/2024 Thesis