Community detection applications in cellular networks (Record no. 10896)

MARC details
000 -LEADER
fixed length control field 07596nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210s2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0001-9838-5137
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Ayman gaber mohamed mohamed
245 1# - TITLE STATEMENT
Title Community detection applications in cellular networks
Statement of responsibility, etc. /Ayman gaber mohamed mohamed
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 49p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor: <br/>Nashwa Abdelbaki
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>DEDICATION................................................................................................................ i<br/>ACKNOWLEDGEMENTS........................................................................................... ii<br/>TABLE OF CONTENTS.............................................................................................. vi<br/>LIST OF FIGURES ...................................................................................................... vi<br/>LIST OF TABLES....................................................................................................... vii<br/>ACRONYMS.............................................................................................................. viii<br/>PUBLICATIONS......................................................................................................... vii<br/>ABSTRACT.................................................................................................................. iii<br/>Chapter 1 INTRODUCTION.........................................................................................1<br/>1.1 Thesis Outlines.....................................................................................................3<br/>1.2 Thesis Contributions...........................................................................................4<br/>Chapter 2 OPPRTUNITIES AND USE CASES ...........................................................5<br/>Chapter 3 MOBILE NETWORK ARCHETICTURE AND TRACKING AREA <br/>DESIGN.........................................................................................................................9<br/>Chapter 4 PREVIOUSE WORK..................................................................................17<br/>Chapter 5 CLUSTERING, CONSTRAINED CLUSTERING AND COMMUNITY <br/>DETECTION ...............................................................................................................19<br/>5.1 Clustering Algorithms........................................................................................19<br/>5.2 Edge Betweenness Calculation:.........................................................................23<br/>5.3 Edge Removal:....................................................................................................23<br/>5.4 Final Communities: ............................................................................................24<br/>CHAPTER 6 PHASE1: DATASET AND CLUSTERING ALGORITHMS RESULTS<br/>......................................................................................................................................25<br/>vii<br/>6.1 Dataset Creation................................................................................................25<br/>6.2 Results of Clustering Algorithms and Constrained Clustering..........................27<br/>Chapter 7 Phase 2 Dataset and Community Detection Algorithm..............................32<br/>7.1 Dataset Creation.................................................................................................32<br/>7.2 Community Detection Algorithm ......................................................................33<br/>7.3 Benchmarking Results.......................................................................................42<br/>Chapter 8 CONCLUSION AND FUTURE WORK....................................................46<br/>8.1 Conclusion..........................................................................................................46<br/>8.2 Future Work.......................................................................................................46<br/>REFERENCES ............................................................................................................49
520 3# - Abstract
Abstract Abstract:<br/>The explosive growth of mobile internet services and demand for data connectivity <br/>boosts the innovation and development in Radio Access Network (RAN) to define how<br/>next generation mobile networks will look like. Continuous improvement in existing <br/>RAN is crucial to meet very strict speed and latency requirements by different mobile <br/>applications with minimum investments. The existing Radio Access Network (RAN)<br/>is facing many challenges to meet Quality of Service (QoS) requirements by different <br/>mobile applications in addition to the increasing pressure to reduce operating cost. <br/>Innovation and development in RAN have been accelerated to tackle these challenges <br/>and to define how next generation mobile networks should look like. The role of<br/>Machine Learning (ML) and Artificial Intelligence (AI) driven innovations within the <br/>RAN domain is strengthening and attracting lots of attention to tackle many of the <br/>challenging problems. In this research we surveyed RAN network base stations <br/>clustering and its applications in the literature. The research also demonstrates how to<br/>leverage community detection algorithms to understand underlying community <br/>structures within RAN. Tracking Areas (TA) planning novel framework was developed <br/>by adapting existing community detection algorithm to solve the problem of statically <br/>partitioning a set of base stations into TA according to mobility patterns. Finally, live <br/>network dataset in dense urban part of Cairo is used to assess how the developed <br/>framework is used to partition this part of the network more efficiently compared to <br/>other clustering techniques. Results obtained showed that the new methodology saved <br/>up to 37.8% of inter TA signalling overhead and surpassing other conventional <br/>iv<br/>clustering algorithms. The main contributions of the thesis can be summarized as <br/>follows. <br/>1. Formulating the Tracking Area optimization problem using live network dataset <br/>using real network measurements to estimate density of mobile subscriber’s mobility <br/>between different base stations to benchmarking different partitioning approaches. <br/>2. Developing a heuristic approach for solving the tracking area optimization problem <br/>using constrained clustering techniques. <br/>3. Developing a heuristic approach for solving the tracking area optimization problem <br/>using graph theory by defining each base station as a vertex and define weighted edges <br/>between different vertices.<br/>4. A performance comparison for the quality of the constrained partitioning. The <br/>assessment is based on the mobility density between different cuts in each of the used <br/>algorithms using real network statistics.<br/>5. The thesis propose a new framework to tackle other mobile network problems using <br/>graph theory by defining weighted edges between different base stations using the <br/>relevant network statistics according to the problem being studied.<br/>Keywords:<br/> RAN Mobility Optimization, Tracking Area Planning, RAN Intelligence, <br/>Community Detection, Machine Learning
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject informatics
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School informatics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/27/2024   610/A.G.C/2024 08/27/2024 08/27/2024 Thesis