Enhancing Lung Cancer Detection (Record no. 10895)

MARC details
000 -LEADER
fixed length control field 15862nam a22002657a 4500
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 201210s2024 a|||f bm|| 00| 0 eng d
024 7# - Author Identifier
Standard number or code 0000-0003-3060-5986
Source of number or code ORCID
040 ## - CATALOGING SOURCE
Original cataloging agency EG-CaNU
Transcribing agency EG-CaNU
041 0# - Language Code
Language code of text eng
Language code of abstract eng
-- ara
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 610
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Samar Ibrahim Antar Awwad Ramadan
245 1# - TITLE STATEMENT
Title Enhancing Lung Cancer Detection
Remainder of title : Leveraging CT Features for Identifying Nodules of Various Sizes in Chest X-Ray Images
Statement of responsibility, etc. /Samar Ibrahim Antar Awwad Ramadan
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2024
300 ## - PHYSICAL DESCRIPTION
Extent 125 p.
Other physical details ill.
Dimensions 21 cm.
500 ## - GENERAL NOTE
Materials specified Supervisor:<br/>Prof. Mustafa Elattar
502 ## - Dissertation Note
Dissertation type Thesis (M.A.)—Nile University, Egypt, 2024 .
504 ## - Bibliography
Bibliography "Includes bibliographical references"
505 0# - Contents
Formatted contents note Contents:<br/>Table of Contents<br/>ACKNOWLEDGEMENT................................................................................................... i<br/>ABSTRACT........................................................................................................................ ii<br/>Table of Contents............................................................................................................... iii<br/>List of Figures................................................................................................................... vii<br/>List of Tables .......................................................................................................................x<br/>List of Equations................................................................................................................ xi<br/>List of Abbreviation......................................................................................................... xiii<br/>Chapter 1 INTRODUCTION...............................................................................................1<br/>1.1. MOTIVATION....................................................................................................1<br/>1.2. PROBLEM DEFINITION...................................................................................3<br/>1.3. CONTRIBUTION................................................................................................4<br/>1.4. THESIS OUTLINES ...........................................................................................5<br/>Chapter 2 BACKGROUND.................................................................................................7<br/>2.1. OVERVIEW ........................................................................................................7<br/>2.2. CLINICAL BACKGROUND..............................................................................8<br/>2.2.1. Respiratory System..........................................................................................8<br/>2.2.2. Lung Cancer...................................................................................................10<br/>2.2.3. Nodule Definitions and Different size of nodules .........................................10<br/>2.2.4. Types of Nodules (Benign vs malignant) ......................................................13<br/>2.2.5. Statistics of Lung Cancer Spread...................................................................15<br/>2.3. LUNG CANCER DIAGNOSIS.........................................................................16<br/>2.4. SUMMARY.......................................................................................................18<br/>Chapter 3 RELATED WORK ...........................................................................................19<br/>3.1. LUNG CANCER DETECTION & SEGMENTATION IN CT........................19<br/>3.2. LUNG CANCER DETECTION & SEGMENTATION IN X-ray....................25<br/>Chapter 4 DATA AND DATASET CREATION..............................................................31<br/>4.1. PUBLIC DATASETS........................................................................................31<br/>4.1.1. Chexpert.........................................................................................................31<br/>4.1.2. The Japanese Society of Radiological Technology .......................................31<br/>4.1.3. Montgomery (NLM-MC)...............................................................................32<br/>4.1.4. Covid-19 and Lung Opacity Datasets............................................................32<br/>iv<br/>4.1.5. LIDC-IDRI.....................................................................................................33<br/>4.1.6. Nodules Chest X-rays (LIDC-IDRI)..............................................................34<br/>4.2. SIMULATED DATASET .................................................................................34<br/>4.2.1. Simulated Data for Image Enhancement .......................................................34<br/>4.3. CREATE SYNTHESIZED 2D CXR FROM 3D THORAX CT.......................35<br/>4.4. ANNOTATION .................................................................................................38<br/>4.5. CORRECTION FOR BOUNDING BOX ANNOTATION AFTER <br/>AUGMENTATION........................................................................................................38<br/>4.6. SUMMARY.......................................................................................................40<br/>Chapter 5 PROPOSED FRAMEWORK ...........................................................................42<br/>5.1. OVERVIEW ......................................................................................................42<br/>5.2. IMAGE PRE-PROCESSING ............................................................................42<br/>5.2.1. Convert CXR images to grayscale and Crop to square..................................43<br/>5.2.2. Adaptive Histogram Equalization..................................................................44<br/>5.2.3. Augmentation.................................................................................................45<br/>5.2.4. Expanding Montgomery Dataset by Merging Lungs.....................................45<br/>5.2.5. The Laplacian of Gaussian (LoG)..................................................................46<br/>5.2.6. Gamma Correction.........................................................................................46<br/>5.2.7. CT Pre-processing..........................................................................................47<br/>5.3. IMAGE ENHANCEMENT...............................................................................49<br/>5.3.1. Proposed image enhancement approach VAE + U-Net:................................49<br/>5.4. LUNG SEGMENTATION................................................................................51<br/>5.5. BONE SUPPRESSION .....................................................................................53<br/>5.5.1. Segmenting Bones from DRRs Using U-Net ................................................53<br/>5.5.2. Generating Rib and Difference images for JSRT ..........................................55<br/>5.5.3. Proposed Latent Boosted Pix2Pix++ Architecture (LB-Pix2Pix++).............56<br/>5.6. CLASSIFICATION ...........................................................................................60<br/>5.7. EXPLAINABLE AI (XAI)................................................................................61<br/>5.7.1. Class Activation Mapping (CAM).................................................................63<br/>5.7.2. Gradient-Weighted Class Activation Mapping (Grad-CAM)........................64<br/>5.8. LOCALIZATION..............................................................................................67<br/>Chapter 6 EXPERIMENTAL SETTINGS ........................................................................68<br/>v<br/>6.1. IMAGE ENHANCEMENT...............................................................................68<br/>6.1.1. Overview........................................................................................................68<br/>6.1.2. VAE Objective Function Optimization and Training....................................68<br/>6.2. LUNG SEGMENTATION................................................................................69<br/>6.2.1. Overview........................................................................................................69<br/>6.2.2. Loss Functions...............................................................................................70<br/>6.2.3. Evaluation matrices........................................................................................71<br/>6.3. BONE SUPPRESSION .....................................................................................72<br/>6.3.1. Bone Segmentation Training .........................................................................72<br/>6.3.2. LB-Pix2Pix++ for Bone Suppression ............................................................72<br/>6.3.3. Evaluation Protocol........................................................................................74<br/>6.4. CLASIFICATION .............................................................................................75<br/>6.4.1. Without data augmentation............................................................................75<br/>6.4.2. With applying data augmentation ..................................................................76<br/>6.4.3. Generalization on JSRT data .........................................................................77<br/>6.5. LOCALIZATION..............................................................................................77<br/>6.5.1. Bounding box estimation (detection).............................................................77<br/>6.5.2. The segmentation model (2nd technique)......................................................78<br/>Chapter 7 RESULTS..........................................................................................................80<br/>7.1. IMAGE ENHANEEMENT ...............................................................................80<br/>7.1.1. Simulation of extra/ halting structures data ...................................................80<br/>7.1.2. The training outcome .....................................................................................80<br/>7.2. LUNG SEGMENTATION................................................................................82<br/>7.3. TESTING OF VAEU-NET AND RESU-NET++.............................................84<br/>7.4. BONE SUPPRESSION .....................................................................................85<br/>7.4.1. Ablation Study ...............................................................................................85<br/>7.4.2. Comparison to the State-of-the-Art ...............................................................89<br/>7.5. CLASSIFICATION ...........................................................................................90<br/>7.5.1. Without data augmentation............................................................................90<br/>7.5.2. With data augmentation .................................................................................90<br/>7.5.3. Generalization on JSRT data & Performance Comparison to Literature ......91<br/>7.5.4. Grad-CAM for the JSRT dataset....................................................................92<br/>vi<br/>7.5.5. Testing on unseen dataset ..............................................................................95<br/>7.6. LOCALIZATION..............................................................................................96<br/>7.6.1. Bounding box estimation (Detection) on JSRT.............................................96<br/>7.6.2. Testing Bounding box detection model on unseen datasets ..........................97<br/>7.6.3. The segmentation model (2nd technique) on JSRT.......................................99<br/>7.6.4. Testing the segmentation model on DRRs...................................................100<br/>Chapter 8 DISCUSSION .................................................................................................103<br/>8.1. LUNG SEGMENTATION..............................................................................103<br/>8.2. TESTING OF VAEU-NET AND RESU-NET++...........................................104<br/>8.3. BONE SUPPRESSION ...................................................................................104<br/>8.4. CLASSIFICATION .........................................................................................107<br/>8.5. LOCALIZATION............................................................................................108<br/>Chapter 9 CONCLUSION AND FUTURE WORK........................................................110<br/>9.1. CONCLUSION................................................................................................110<br/>9.2. FUTURE WORK.............................................................................................111<br/>REFERENCES ................................................................................................................112<br/>Appendix A EXPLAINABILITY....................................................................................121<br/>A.1. CLASS-ENHANCED ATTENTIVE RESPONSE (CLEAR)............................121<br/>A.2. DECONVOLUTIONAL NETWORKS .............................................................121<br/>A.3. LAYER-WISE RELEVANCE PROPAGATION (LRP)...................................123<br/>A.4. DIFFERENCE OF LRP FROM GRAD-CAM AND CAM...............................124<br/>A.5. LRP RULES FOR DEEP RECTIFIER NETWORKS .......................................124<br/>A.6. DEEP LEARNING IMPORTANT FEATURES (DEEPLIFT) .........................125
520 3# - Abstract
Abstract Abstract:<br/>The high-resolution capability of thoracic Computerized Tomography (CT) <br/>scans enables detailed visualization of lung structures, making it possible to <br/>detect even small abnormalities. This level of detail is especially crucial for <br/>identifying early-stage lung nodules, which may not be visible or <br/>distinguishable in other imaging modalities. However, CT scans have <br/>limitations like cost, access, radiation exposure, and lack of portability. Chest <br/>X-rays (CXRs) are 2D projective images where objects may not appear clear <br/>and can overlap, leading to limited visibility of lung nodules. Deep learning <br/>algorithms have the potential to address these limitations. This thesis proposes <br/>leveraging CT volume features to improve the detection and localization of <br/>lung cancer in CXR, thus enabling radiologists to diagnose lung cancer using <br/>Chest X-ray images more confidently. This could be done by finding CT <br/>features that define small, medium, and large-sized nodules and projecting <br/>those features onto CXR data. The proposed detection system includes all <br/>phases and subtasks required for CXR-based lung cancer identification. Due <br/>to a scarcity of CXR images that contain different nodule sizes, feasibility of <br/>small nodules detection in CXR images is demonstrated by fine-tuning our <br/>predictive model using Digitally Reconstructed Radiographs (DRRs), created <br/>from CT projections. Our proposed method outperforms previous state-of-theart methods, in terms of Mean Intersection Over Union (mIOU) and AUC for <br/>lung cancer detection. Furthermore, the proposed method incorporates <br/>Explainable AI (XAI) module to provide physicians with trustworthy <br/>decision-making tools. It achieves AUC of 0.9762 and MIOU of 0.9025 for <br/>detecting and segmenting nodules on the JSRT dataset, which contains <br/>different sizes of nodules. Additionally, it achieves MIOU of 0.6579 and <br/>0.7646 for small and medium size nodules, respectively.<br/>Keywords:<br/>Chest X-ray, Lung Cancer Segmentation, Computerized Tomography, Different Sizes of <br/>Nodules, Bone Suppression, Chest X-ray Enhancement and DRRs Generation.
546 ## - Language Note
Language Note Text in English, abstracts in English and Arabic
650 #4 - Subject
Subject informatics
655 #7 - Index Term-Genre/Form
Source of term NULIB
focus term Dissertation, Academic
690 ## - Subject
School informatics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Thesis
655 #7 - Index Term-Genre/Form
-- 187
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Total Checkouts Full call number Date last seen Price effective from Koha item type
    Dewey Decimal Classification     Main library Main library 08/27/2024   610/S.R.E/2024 08/27/2024 08/27/2024 Thesis